

EN

User 's Manual

Measuring transducers:

- Power Transducer iMT510
- Power Transducer & Recorder iMT511
- Voltage Transducer iMT516
- Current Transducer iMT518

Power Transducer iMT510

Power Transducer & Recorder iMT511

Voltage Transducer iMT516

Current Transducer iMT518

User and Installation manual

Security Advices and Warnings

Please read this chapter carefully and examine the equipment carefully for potential damages which might arise during transport and to become familiar with it before continue to install, energize and work with a measuring transducers iMT510, iMT511, iMT516, and iMT518.

This chapter deals with important information and warnings that should be considered for safe installation and handling with a device in order to assure its correct use and continuous operation.

Everyone using the product should become familiar with the contents of chapter »Security Advices and Warnings«.

If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

PLEASE NOTE

This booklet contains instructions for installation and use of measuring transducer. Installation and use of a device also includes handling with dangerous currents and voltages therefore should be installed, operated, serviced and maintained by qualified personnel only. ISKRA d.o.o. assumes no responsibility in connection with installation and use of the product. If there is any doubt regarding installation and use of the system in which the device is used for measuring or supervision, please contact a person who is responsible for installation of such system.

Before switching the device ON

Check the following before switching on the device:

- Nominal voltage.
- Proper connection of auxiliary supply.
- Nominal frequency.
- Voltage ratio and phase sequence.
- Current transformer ratio and terminals integrity.
- Protection fuse recommended maximal external fuse size is 6 A.
- Integrity and proper connection of earth protective terminals (where necessary).

Important: A current transformer secondary should be short circuited before connecting the meter.

Used symbols on devices' housing and labels

SYMBOL	EXPLANATION
	WARNING
	Indicates situations where careful reading of this manual is required and following requested steps to avoid potential injury is advised.
	Double insulation in compliance with the SIST EN 61010-1 standard.
	Protective conductor terminal. Terminal which is bonded to conductive parts of an instrument for safety purposes and is intended to be connected to an external protective earthing system.
Ţ	Functional ground potential. Note : This symbol is also used for marking a terminal for protective ground potential if it is used as a part of connection terminal or auxiliary supply terminals.
X	Compliance of the product with directive 2002/96/EC, as first priority, the prevention of waste electrical and electronic equipment (WEEE), and in addition, the reuse, recycling and other forms of recovery of such wastes so as to reduce the disposal of waste. It also seeks to improve the environmental performance of all operators involved in the life cycle of electrical and electronic equipment.
(6	Compliance of the product with European CE directives.
Important: A transducer.	current transformer secondary should be short circuited before connecting the

Battery replacement 0000

Some instruments are equipped with a built-in battery. When empty, replace with a corresponding type (Varta, type 6032 CR2032 SLF or equivalent). A battery shall be replaced by an authorized service. The battery lifetime is approx. 6 years. Instruction on battery replacement is given in chapter 5: Battery replacement.

Disposal

It is strongly recommended that electrical and electronic equipment (WEEE) is not deposit as municipal waste. The manufacturer or provider shall take waste electrical and electronic equipment free of charge. The complete procedure after lifetime should comply with the Directive 2002/96/EC about restriction on the use of certain hazardous substances in electrical and electronic equipment.

Table of contents

<u>1</u>	BASIC DESCRIPTION AND OPERATION	<u> </u>	
1.1	INTRODUCTION		
1.2	DESCRIPTION OF THE DEVICE		
1.3	Purpose and use of different types of measuring transducers		
1.4	Type differences		
•		c.	
<u> </u>	CONNECTION	<u> </u>	
2.1	INTRODUCTION		
2.2	Mounting		
2.3	Electrical connection $igodoldsymbol{\Theta} igodoldsymbol{\Theta} igodoldsymbol{\Theta}$		
2.4	Connection of input/output modules $igoplus igoplus igoplus$		
2.5	Communication connection $igodoldsymbol{\Theta} igodoldsymbol{\Theta} igodoldsymbol{\Theta}$		
2.6	Connection of Auxiliary power supply $igodoldsymbol{\Theta} igodoldsymbol{\Theta} igodoldsymbol{\Theta}$		
<u>3</u>	SETTINGS	14	
2.4	INTRODUCTION		
3.⊥ 2.2			
3.2			
3.4 2 E			
2.5			
3.0			
3.7			
3.0			
3 10			
3 11			
3.12			
3.13	Reset operations • • • •		
<u>4</u>	MEASUREMENTS	27	
4.1	SUPPORTED MEASUREMENTS		
4.2			
4.4	CALCULATION AND DISPLAY OF MEASUREMENTS		
4.5			
4.6			
4.7	WEB INTERFACE		
<u>5</u>	BATTERY REPLACEMENT	33	
5.1	INSTRUCTIONS FOR REPLACEMENT		

v

TECHNICAL DATA	34	
Accuracy ● 【 【		35
Mechanical characteristics of input $lacksquare$		36
ELECTRICAL CHARACTERISTICS OF INPUT		36
I/O modules ●●●●		37
Analogue output ●●●●		37
		38
ELECTRONIC FEATURES		38
SAFETY FEATURES ●●●●		39
Dimensions		40
ABBREVIATION/GLOSSARY	41	
APPENDICES	42	
	<u></u>	
APPENDIX A: MODBUS COMMUNICATION PROTOCOL		42
APPENDIX C: CALCULATIONS & EQUATIONS		49
	TECHNICAL DATA Accuracy Mechanical characteristics of input Electrical characteristics of input I/O modules Analogue output Communication Electronic features Dimensions Abbreviation/glossary Appendices Appendices Appendices	TECHNICAL DATA 34 Accuracy ••••• Mechanical characteristics of input ••••• Electrical characteristics of input ••••• I/O modules •••• I/O modules ••••• Analogue output ••••• Analogue output ••••• Electronic features •••• Electronic features ••••• Mechanical characteristics •••• Dimensions ••••• 41 Appendices 42 APPENDIX A: MODBUS communication protocol Appendix A: MODBUS communication stations ••••

1 BASIC DESCRIPTION AND OPERATION

The following chapter presents basic information about multifunction transducers required to understand its purpose, applicability and basic features connected to its operation. In this chapter you will find:

1.1	INTRODUCTION	2
1.2	DESCRIPTION OF THE DEVICE	3
1.3	PURPOSE AND USE OF DIFFERENT TYPES OF MEASURING TRANSDUCERS	4
1.4T	YPE DIFFERENCES	5

1.1 Introduction

Regarding the type of measuring transducer different chapters should be considered since the types differ in functionality and design. More detailed description of device functions is given in chapter Type differences. Al types of measuring transducers are available in DIN or ANSI housing. Instruments in DIN housing are marked as types iMT5xx; instruments in ANSI housing are marked as types iUMT5xx. Specifications of housing for both types are specified in chapter Dimensions.

1.1.1 Description of symbols

In different chapters or tables different symbols may appear in User's Manual. According to the position of symbols, they have different meaning.

1.1.1.1 *Chapter*

Due to differences among devices, some chapters do not relate to your instrument. Five symbols next to chapter heading are for faster surveying. Type of symbol indicates to which extent the chapter applies for each type of measuring transducer. Meaning of each symbol is:

- O Function not supported
- Function partially supported (see a note)
- – Function completely supported

Each of the three positions, where the symbols are indicates a Measuring transducer type. Positions follow from left to right:

iMT511/iMT510/iMT516/iMT518

1.1.1.2 Subchapter

Symbols next to the subchapters indicate accessibility of functions described. Accessibility of functions is indicated with the following symbols:

PC – Function accessible via communication (MiQen software)

1.1.1.3 *Tables*

Supported functions and measurements are listed in tables for all types. Symbols in tables indicate support of enabled functions for each type. Additionally a legend is placed below table of used symbols. Meaning of symbols is:

- - Function is supported
- × Function is not supported
- Symbol meaning varies and is described in the legend below the table

USER INFORMATION

For unknown technical terms please refer to Glossary at the end of the document.

1.2 **Description of the device**

Measuring transducer is intended for measuring, analyzing and monitoring single-phase electrical power network. It measures true RMS values by means of fast sampling of voltage and current signals, which makes instrument suitable for acquisition of transient events. A built-in microcontroller calculates measurements (voltage, current, frequency, energy, power, power factor, THD, phase angles, MD) from the measured signals.

1.2.1 Appearance

Measuring transducer can differ from yours depending on the type and functionality.

0111y)

- 2 –I/O modules
- 3 Auxiliary supply
- 4 Voltage inputs

5 – Current inputs

6 – LED indicators, RJ45 Ethernet connector (option) and USB-B type connector (option)

ĺ	2 9 9 9 9	001	
	$\frac{+}{1/0}$ $\frac{+}{1}$ $\frac{+}{1/0}$ $\frac{-}{2}$		
iMT518 Current Transducer	e Iskra	а 16 м,	-
+ - <u>A</u>			-
3	4	5	6
13 19	000	9 9	

1.2.1.1 Communication ports and LED indicators

Under the sliding, semitransparent cover are connectors for various communication types, which should be chosen at placing the order. Serial communication can be connected through DB9 connector (RS232 or RS485) or screw-in connector (RS485 only). Ethernet communication can be connected through standard RJ-45 type connector. USB can be connected through USB-B type connector. There is also additional communication port (RS485), which is intended for Remote display connection (RJ-11 type connector).

Two LED indicators are intended for POWER ON signaling (red LED) and COMMUNICATION IN PROGRESS signaling (green LED blinking).

1.2.1.2 I/O modules

Two I/O module slots are intended for various I/O modules, which should be chosen at placing the order. Digital inputs, analogue outputs, alarm / digital outputs and pulse outputs.

1.2.1.3 Auxiliary supply

Auxiliary supply is connected through three screw-in connectors. For safety purposes it is important that all three wires (Line, Neutral and Earth) are firmly connected. Auxiliary supply can be either LOW (19 VDC – 70 VDC; 48 VAC – 77 VAC) or HIGH (70 VDC – 300 VDC; 80 VAC – 276 VAC), which should be chosen at placing the order.

1.2.1.4 Voltage inputs

Each voltage input is connected to measuring circuit through input resistor chain (4.2 M Ω per phase). Maximum value of input voltage is 600 V_{L-N}.

1.2.1.5 Current inputs

Each current input is connected to measuring circuit through current transformer (0.01 Ω per phase). Maximum allowed thermal value of input current is 15 A (cont.).

1.3 Purpose and use of different types of measuring transducers

1.3.1 Voltage transducer iMT516

iMT516 is intended for measuring and monitoring single-phase electrical power network. Voltage input is electrically isolated from the system by means of high resistive input chain. It measures true RMS voltage value by means of fast sampling of voltage signals, which makes instruments suitable for acquisition of transient events. A built-in microcontroller calculates measurands (voltage, frequency) from the measured signals. Measurands can be then converted into load independent DC current or voltage which is proportional to the true RMS measured value for the purpose of regulation of analogue and/or digital devices.

1.3.2 Current transducer iMT518

iMT518 is intended for measuring and monitoring single-phase electrical power network. Input current is electrically isolated from the system by means of current transformer. iMT518 measures true RMS current value by means of fast sampling of current signals, which makes instruments suitable for acquisition of transient events. A built-in microcontroller calculates measurands (current, frequency) from the measured signals. Measurands can be then converted into load independent DC current or voltage which is proportional to the true RMS measured value for the purpose of regulation of analogue and/or digital devices.

1.3.3 Power transducer iMT510

iMT510 is intended for measuring and monitoring single-phase electrical power network. Input voltage and input current are electrically isolated from the system by means of high resistive input chain and current transformer respectively. It measures true RMS values by means of fast sampling of voltage and current signals, which makes instruments suitable for acquisition of transient events. A built-in microcontroller calculates measurands (voltage, current, frequency, energy, power, power factor, THD phase angles, etc.) from the measured signals.

1.3.4 Power transducer & recorder iMT511

iMT511 measures all parameters like iMT510 and additionally it records the readings and alarms in the internal memory for the period of three years or more. Internal battery powered real time clock enables also energy measurement as well as recording of time – stamped events (alarms) in the internal memory.

Wide range of various I/O modules makes iMT51x family of trnasducers a perfect choice for numerous applications. iMT51x can be delivered pre-configured to the required measuring set-up and output characteristic or they can be delivered un-configured for customer configuration with user friendly setting software MiQen. They support a wide range of communication interfaces. Standard serial RS232/485 with speed up to 115200 baud is perfect for simple applications and serial bus interfacing. Ethernet 10/100 is ideal for a long distance monitoring and configuration of numerous transducers. USB 2.0 can be used for a fast set-up or memory acquisition.

1.4 Type differences

Different types differ on functionality and equipment as shown in the following table.

Differences in hardware

Feature	iMT511	iMT510	iMT516	iMT518
Internal flash memory	8Mb	×	×	×
Real time clock (RTC) with battery	•	×	×	×
Communication interface		•/0		
RS232 and Ethernet/USB	•/0	•/0	•/0	•/0
I/O 1 AN/AL /PO/DI	0/0/0/0	0/0/0/0	0/0/×/0	0/0/×/0
I/O 2 AN/AL /PO/DI	0/0/0/0	0/0/0/0	0/0/×/0	0/0/×/0
Automatic voltage / current range	●/●	●/●	●/×	×/•
Universal power supply LO / HI	0/●	0/●	0/●	0/●
LED indicator: Power/Comm	•/•	●/●	•/•	●/●

AN-analogue out, AL-alarm/digital out, PO-pulse out, DI-digital in

Software functions

Functions	iMT511	iMT510	iMT516	iMT518
MODBUS protocol	٠	٠	٠	٠
Programmable alarms	16	16	16	16
Alarms recording	٠	×	×	×
Measurements recording	٠	×	×	×

Supported measurements

	Basic measurements	iMT511	iMT510	iMT516	iMT518
	Voltage U ₁	•	•	•	×
	Current I ₁	•	•	×	•
	Active power P ₁	•	•	×	×
	Reactive power Q ₁	•	•	×	×
	Apparent power S ₁	•	•	×	×
	Power factor PF ₁	•	•	×	×
hase	Power angle ϕ_1	•	•	×	×
٩	THD of phase voltage U _{f1}	•	•	•	×
	THD of phase current I ₁	•	•	×	•
	Frequency	•	•	•	•
	Internal temperature	•	•	•	•
	Date & Time	•	×	×	×
	MD	•	•	•	•
	Counter 1	•	•	×	×
rgy	Counter 2	•	•	×	×
Ene	Counter 3	•	•	×	×
	Counter 4	•	•	×	×
• - 9	erial × – not supported				

2 CONNECTION

This chapter deals with the instructions for measuring transducer connection. Both the use and connection of the device includes handling with dangerous currents and voltages. Only a qualified person shall therefore perform connection. Iskra d.o.o. does not take any responsibility regarding the use and connection. If any doubt occurs regarding connection and use in the system, which device is intended for, please contact a person who is responsible for such installations. In this chapter you will find:

Introduction	7
Mounting	7
Electrical connection $\blacksquare \blacksquare \blacksquare \blacksquare$	8
Connection of input/output modules $\bullet \bullet \bullet \bullet$	9
Communication connection $\bullet \bullet \bullet \bullet$	10
Connection of auxiliary power supply $igodoldsymbol{\Theta} igodoldsymbol{\Theta} igodoldsymbol{\Theta}$	13
	INTRODUCTION MOUNTING ELECTRICAL CONNECTION O O O O CONNECTION OF INPUT/OUTPUT MODULES O O O COMMUNICATION CONNECTION O O O O CONNECTION OF AUXILIARY POWER SUPPLY O O O

2.1 Introduction

Before use: Check voltages, supply voltage and nominal frequency.

Check protective fuse rating (the recommended maximum rating of the external protective fuse for this equipment is 6 A - Red Spot type or equivalent).

WARNING!

Wrong or incomplete connection of voltage, protective ground or other terminals can cause malfunction or damage the device.

PLEASE NOTE

After connection, settings have to be performed via communication or remote display (connection mode, current and voltage transformers ratio ...).

2.2 Mounting

iMT51x measuring transducer is designed for panel mounting. It should be mounted on a 35 mm DIN rail by means of three plastic fasteners. Before installation fasteners should be in open position (pulled). After device is on place, fasteners are locked (pushed) to close position.

2.3 Electrical connection

Voltage inputs of measuring transducer can be connected directly to low-voltage network or via appropriate voltage measuring transformer to medium or high voltage network.

Current inputs of measuring transducer can be connected directly to low-voltage network or via a corresponding current transformer.

Choose corresponding connection from the figures below and connect corresponding voltages and currents. Information on electrical characteristics is given in chapter Inputs.

2.4 Connection of input/output modules

WARNING!

Check the module features that are specified on the label, before connecting module contacts. Wrong connection can cause damage or destruction of module and/or device.

Connect module contacts as specified on the label. Examples of labels are given below and describe modules built in the device. Information on electrical properties of modules is given in chapter Modules.

I/O 1 Relay output 48 V DC/AC +/~ ₅ 1000 mA -/~ ℃ 16	Alarm (relay) module. (Example of alarm module as I/O module 1)
I/O 1 Pulse output 40 V DC/AC +/~ ₅ 30 mA -/~<	Pulse output (solid state) module for energy counters. (Example of pulse module as I/O module 1)
I/O 1 Analogue output 0/+20 mA + ₅ 15 0/+10 V - ℃ 16	Analogue output module with analogue output, proportional to measured quantities. The outputs may be either short or open-circuited. They are electrically insulated from each other and from all other circuits. (Example of analogue output module as I/O module 1)
I/O 1 Digital input 48 V DC/AC +/~ ₅ + 40% max -/~ ♀ 16	Digital input module enables reception of impulse signal. (Example of digital module as I/O module 1)
I/O 1 Watchdog output 48 V DC/AC +/~ p 1000 mA -/~ 2 16	Watchdog output (relay) module enables proper instrument operation supervision. (Example of Watchdog output module as I/O module 1)

2.5 **Communication connection**

iMT51x has a wide variety of communication possibilities to suit specific demands. In the case of simultaneous use of Ethernet and USB communication, the standard port (COM1) is shared by two communication channels: COM1A (Ethernet) and COM1B (USB). This allows different users to access data from iMT51x simultaneously and by using Ethernet communication, data can be accessed worldwide.

Different configurations are possible (to be specified with an order):

Configuration	COM1A	COM1B
1	RS232/485 ⁽¹⁾	/
2	Ethernet	USB

⁽¹⁾ RS485 communication is available through DB9 or screw-in terminals, while RS232 is available only through DB9

WARNING!

When connecting a DB9 communication connector it is necessary to assure that only RS232 or RS485 communication is used. Terminals of a DB9 connector that are not necessary for the used communication should remain unconnected, otherwise the communication module and/or device can be damaged or destroyed. See connection diagrams below.

Connect a communication line by means of a corresponding terminal. Corresponding data are stated on the instrument label, regarding the selected communication. Connector terminals are marked on the label on the upper side of the instrument. More detailed information on communication is given in chapter Communication.

COMMUNICATION					
Te	rmin	al:	23	Α	
F	RS48	5	25	В	
[DB9 -	FE	MAL	Ξ	
F	RS23	2	RS	485	
Тx	Rx	Ŧ	В	Α	
2	3	5	7	8	
COMMUNICATION Ethernet					
	MA	AC N	o.:		
USB 2.0 Type B					

DB9 connector for RS232 and RS485 communication

RJ45 Ethernet connector

USB-B type connector

2.5.2 RS232

RS232 communication is intended for direct connection of the measuring transducer to the personal computer. It is necessary to assure the corresponding connection of individual terminals of the DB9 connector (see a table on the next page).

2.5.3 RS485

RS485 communication is intended for connection of devices to network where several instruments with RS485 communication are connected to a common communication interface. We recommend the use of Iskra d.o.o. communication interfaces for best compatibility!

Correct connection of individual terminals of the DB9 connector shall be provided (see a table on the next page).

2.5.4 Ethernet

Ethernet communication allows for integration of the device into global Ethernet-based networks. The device supports fast Ethernet (10/100 Mbps). For proper operation, standard IEEE 802.3 compliant 100BASE-T CAT5 Ethernet cable is recommended. The device is supplied with a unique MAC address for identification. The MAC address is printed on the label, positioned on the upper side of the instrument.

2.5.5 USB

USB communication serves as a fast peer-to-terminal data link. The instrument is detected by host as a USB 2.0 compatible device. The USB connection is provided through a USB standard Type B connector.

PLEASE NOTE

When iMT51x is connected to a PC through USB communication for the first time, a user is prompted to install a driver. The driver is provided on the CD, enclosed in the original shipment package, or can be downloaded from the Iskra d.o.o. web page https://www.iskra.eu/en/. With this driver installed, USB is redirected to a serial port, which should be selected when using MiQen software.

Survey of communication connection

lskra°

	Connector	Terminals	Position	Data direction	Description			
			1	Not connected	-			
			2	From	Data transmission (Tx)			
		5 🛓	3	То	Data reception (Rx)			
		3 Rx	4	Not connected	-			
RS232	DB9	$2 \frac{1}{x}$	5	-	Grounding (上)			
			6	Not connected	-			
			7	-	Do not connect!			
			8	-	Do not connect!			
			9	Not connected	-			
			1	Not connected	-			
	DB9	8 A 7 B	2	-	Do not connect!			
			3	-	Do not connect!			
RS485			4	Not connected	-			
			5	-	Do not connect!			
			6	Not connected	-			
			7	To/From	В			
			8	To/From	A			
			9	Not connected	-			
		25 B	23	To/From	А			
	SCREW-IN		24	Not connected	с			
			25	To/From	В			
Ethernet	RJ-45		100BASE-T	CAT5 cable reco	mmended			
USB	USB-B		Standard USB 2.0 compatible cable recommended (Type B plug)					

2.6 **Connection of auxiliary power supply**

Measuring transducer has universal (AC/DC) auxiliary power supply. Information on electric consumption is given in chapter Technical data. Auxiliary supply is connected through three screw-in connectors. It can be either LOW (19 VDC – 70 VDC; 48 VAC – 77 VAC) or HIGH (70 VDC – 300 VDC; 80 VAC – 276 VAC), which should be chosen at placing the order.

According to power supply voltage specification on the label, choose and connect the power supply voltage:

WARNING!

For safety purposes it is important that all three wires (Line, Neutral and Protective Earth) are firmly connected. They should be connected only to the designated terminals as shown on the label above as well as on the front foil.

3 SETTINGS

A setting structure, which is similar to a file structure in an explorer is displayed in the left part of the MiQen setting window. Available settings of that segment are displayed in the right part by clicking any of the stated parameters.

In this chapter you will find detailed description of all *Multifunction tranduscers* features and settings. Chapter is organized in a way to follow settings organisation as in setting software MiQen.

3.1	INTRODUCTION	15
3.2	MIQEN SOFTWARE	15
3.4	Setting procedure	17
3.5	General settings $igoplus igoplus$	17
3.6	Connection ••••	18
3.7	Serial Communication (COM1) $\bullet \bullet \bullet \bullet$	19
3.8	Security ●●●●	19
3.9	Energy ●●OO	21
3.10	Inputs and outputs $igodoldsymbol{\Theta}$	22
3.11	Alarms 🛡 💶	25
3.12		26
3.13	Reset operations ● ↓ ↓ ↓	26

3.1 INTRODUCTION

Instrument settings can be remotely modified with communication (COM1) and MiQen software, when connected to a PC.

3.2 MiQen software

MiQen software is a tool for a complete programming and monitoring of ISKRA measuring instruments, connected to a PC via serial communication or by a special WM-USB adapter. A userfriendly interface consists of five segments: devices management (Connection), instrument settings (Settings), real-time measurements (Measurements), data analysis (Analysis), and software upgrading (Upgrades). These segments are easily accessed by means of five icons on the left side.

Two editions of MiQen software are available:

- Professional edition with full functionality and supports all software functionality. CDKey is required for the installation.
- Standard edition, freeware edition which supports all software functionality except data analysis.

Sample off MiQen programming and monitoring software:

File Tools	View Help			
💄 🛃 💕 📲 🔛				
🍓 Refresh	Address: 33 🔄 WM3-6	A Go to: 🔹 Device #33,	COM3 - Serial, Setting: 19200,None,8,1	
	📬 Settings		WM3-6, Serial number: 18190532, Read	l at 08:04:2
		Setting	Value	
Connection	i⊟- a General	Туре	WM3-6	
	Communication	Serial Number	18190532	
(1)h	Energy	Software version	0.96	
(C)	Counters	Software checksum	16853	
Settings	IR Relay	Hardware version	D	
	Reset	Accuracy class	1	
		Calibration Voltage (V)	250	
		Calibration Current (A)	65	
		Communication (COM1)	RS485	
Measurements		Input / Output 1	-	
		Input / Output 2	•	
1		Calibration date	14. 09. 2018	
Analysis Wy Devices				
		Type Read only information about device ty	pe.	

MiQen version 2.1 or higher is required for programming and monitoring *Multifunction tranduscers*. Software installation is stored on a CD as a part of consignment or it can be downloaded from https://www.iskra.eu/en/Iskra-Software/MiQen-Settings-Studio/

PLEASE NOTE

MiQen has very intuitive help system. All functions and settings are described in Info window on the bottom of MiQen window.

DEVICES MANAGEMENT

💀 MiQen 2.1 - Set	ting Studio		- 🗆 X
File Tools	View Help		
📫 🛃 🐸 • 🖆	🖬 🔓 🍊 🔍 🕍 🔖 🗖 🛸 🍕		
🍓 Refresh	Address: 33	i Go to: 👻	
9	Set Connection		
Connection	Selected device	Communication port	Searching
	Туре:	Port 10.120.4.166	Constitution and and
0	Serial number:	Setting: 10001	Scan the network
Settings	🎌 Add to My devices	Change settings	Browse ethernet devices
(Measurements			
Analysis My Devices Upgrades			

Select the instrument in a favorite's line. Use the network explorer to set and explore the devices network. Communication parameters of all devices and their addresses in network can be easily set.

INSTRUMENT SETTINGS

Multi Register Edit technology assures a simple modification of settings that are organized in a tree structure. Besides transferring settings into the instrument, storing and reading from the setting files is also available.

REAL-TIME MEASUREMENTS

All supported measurements can be captured in real time in a table form. Harmonics and their timereconstructed signals are displayed also graphically. For further processing of the results of measurements, copying via a clipboard into standard Windows formats is supported.

DATA ANALYSIS

Analysis can be performed for the instruments with a built-in memory. Recorded quantities can be monitored in a tabular or a graphical form. The events that triggered alarms can be analyzed. All data can be exported to an Access data base, Excel worksheets or as a text file.

SOFTWARE UPGRADING

Always use the latest version of software, both MiQen and software in the instrument. The program automatically informs you on available upgrades that can be transferred from the web site and used for upgrading.

3.4 Setting procedure

In order to modify instrument settings with MiQen, current parameters must be loaded first. Instrument settings can be acquired via a communication link (serial or TCP/IP) or can be loaded offline from a file on a local disk. Settings are displayed in the MiQen Setting Window - the left part displays a hierarchical tree structure of settings, the right part displays parameter values of the chosen setting group.

PLEASE NOTE

Supported settings and functions depend on the type of device. For a survey of supported measurements and functions see chapter Type differences.

3.5 General settings

General settings are essential for measuring transducer. They are divided into four additional sublevels (Connection, Communication and Security).

3.5.1 Description and Location 🖻

Two parameters that are intended for easier recognition of a certain unit. They are especially used for identification of the device or location on which measurements are performed.

3.5.2 Average interval 🖻

The averaging interval defines the refresh rate of measurements on communication.

3.5.3 Date and time 📧

Set date and time of the meter. Setting is important for correct memory operation, maximal values (MD).

3.5.4 Maximum demand calculation (MD mode) 🖻

The instrument provides maximum demand values from a thermal function demand values. A thermal function assures exponent thermal characteristic based on simulation of bimetal meters. Maximal values and time of their occurrence are stored in device. A time constant (t. c.) can be set from 1 to 255 minutes and is 6 – time thermal time constant (t. c. = 6 * thermal time constant). Example:

- Mode: Thermal function
- Time constant: 8 min.
- Present MD and MD peak: Reset at 0 min.

3.5.5 Starting current for PF and PA (mA) 🖻

At all measuring inputs noise is usually present. It is constant and its influence on the accuracy is increased by decreasing measuring signals. It is present also when measuring signals are not connected and it occurs at all further calculations as very sporadic measurements. By setting a common starting current, a limit of input signal is defined where measurements and all other calculations are still performed.

3.5.6 Starting current for all powers (mA) 🖻

Noise is limited with a starting current also at measurements and calculations of powers.

3.5.7 Starting voltage for SYNC (V) 🖻

This parameter sets a voltage threshold for measurement synchronization. If voltage signal is below this threshold or there is no voltage signal, current synchronization is used. If also current is below starting current value, fixed (default) frequency value is used for synchronization. This value is set under General/connection/Frequency nominal value(Hz). This value should be set to 50/60Hz according to power frequency used.

3.6 Connection ••••

PLEASE NOTE

Settings of connections shall reflect actual state otherwise measurements are not valid.

3.6.1 Connection 🖻

When connection is selected, load connection and the supported measurements are defined (see chapter Survey of supported measurements regarding connection mode).

3.6.2 Setting of current and voltage ratios 🖻

Before setting current and voltage ratios it is necessary to be familiar with the conditions in which device will be used. All other measurements and calculations depend on these settings. Up to five decimal places can be set. To set decimal point and prefix on remote display position the cursor (left /right) to last (empty) place or the decimal point.

Settings range	VT primary	VT secondary	CT primary	CT secondary
Maximal value	1638.3 kV	13383 V	1638.3 kA	13383 A
Minimal value	0.1 V	1 mV	0.1 A	1 mA

3.6.3 Used voltage and current range 🖻

Setting of the range is connected with all settings of alarms, analogue outputs and a display (calculation) of energy and measurements recording, where 100% represents 500 V 5A. In case of subsequent change of the range, alarms settings shall be correspondingly changed, as well.

3.6.4 Nominal frequency 🖻

A valid frequency measurement is within the range of nominal frequency ± 32 Hz. This setting is used for alarms and recorders only.

3.7 Serial Communication (COM1)

3.7.1 Communication parameters 🖻

They define parameters that are important for the operation in RS485 network or connections with PC via RS232 communication. Factory settings of communication are #33\115200,n,8,2 (address 1 to 247\rate 2400 to 115200 b/s, parity, data bits, stop bit).

3.7.2 USB Communication 📧

For description of all settings see Serial Communication (COM1).

3.7.3 Ethernet communication 🖻

3.7.3.1 IP address 🖭

Communication interface should have a unique IP address in the Ethernet network. Two modes for assigning IP are described:

- *Fixed IP address:* In most installations a fixed IP address is required. A system provider usually defines IP addresses. An IP address should be within a valid IP range, unique for your network and in the same subnetwork as your PC.
- **DHCP:** Automatic method of assigning IP addressed (DHCP) is used in most networks. If you are not sure if DHPC is used in your network, check it at your system provider.

3.7.3.2 Local Port 📧

The physical connector on a device enabling the connection to be made. Use a non reserved port number from 1025 to 65535. If using Redirector software, the port number should be between 14000 and 14009.

Port numbers	Function
1 – 1024, 9999, 30718, 33333	Reserved numbers
14000 – 14009	Reserved for Redirector

Factory settings of Ethernet communication are:

IP Address	DHCP (automatically)
TCP Port	10001
Subnet Mask	255.255.255.0

3.8 Security

Settings parameters are divided into four groups regarding security level:

- 1. At the first level (PL1), settings of a real time clock can be changed, and energy meters and MD can be reset.
- 2. At the second level (PL2), the access to all data that are protected with the first level (PL1) and setting of all other parameters in the »SETTINGS« menu are available.
- 3. A backup password (BP) is used if passwords at levels 1 (PL1) and 2 (PL2) have been forgotten, and it is different for each device (depending on a serial number of the meter). The BP password is available in the user support department in ISKRA d.o.o., and is entered instead of the password PL1 or/and PL2. Do not forget to state the meter serial meter when contacting the personnel in Iskra d.o.o..

PLEASE NOTE

A serial number of device is stated on the label and also accessible with MiQen software.

lle.

<u>ାରାରାରାରାରାର</u>

3.8.1 Password setting 🖻

A password consists of four letters taken from the British alphabet from A to Z. When setting a password, only the letter being set is visible while the others are covered with *.

Two passwords (PL1, PL2) and the time of automatic activation could be set.

Password modification PC

A password can be modified; however, only that password can be modified to which the access is unlocked at the moment.

Password disabling PC

A password is disabled by setting the "AAAA" password.

PLEASE NOTE

A factory set password is "AAAA" at both access levels (L1 and L2). This password does not limit access.

Password and language

Language change is possible without password input. When language is changed from or to Russian, character transformation has to be taken in to account. Character transformation table (English or Russian alphabet) is stated below.

English	A	В	С	D	Е	F	G	Н	I	l	К	L	М	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Z
Russian	A	Б	В	Г	Д	Е	ж	3	И	Й	К	Л	М	Н	0	П	Ρ	С	Т	У	Φ	Х	Ц	Ч	Ш	Щ

3.9 **Energy** ●●**OO**

WARNING!

After modification of energy parameters, the energy meters must be reset otherwise all further energy measurements could be incorrect.

3.9.1 Common energy exponent 🖻

Common energy exponent defines minimal energy that can be displayed on the energy counter. On the basis of this and a counter divider, a basic calculation prefix for energy is defined (-3 is 10^{-3} Wh = mWh, 4 is 10^{4} Wh = 10 kWh). A common energy exponent also influences in setting a number of impulses for energy of pulse output or alarm output functioning as an energy meter.

Define common energy exponent as recommended in table below, where counter divider is at default value 10. Values of primary voltage and current determine proper Common energy exponent. exponent.

Current Voltage	1 A	5 A	50 A	100 A	1000 A
110 V	-1	0	1	1	2
230 V	0	0	1	2	3
1000 V	0	1	2	3	4
30 kV	2	2	3	4	4*

* - Counter divider should be at least 100

3.9.2 Counter divider 🖻

The counter divider additionally defines precision of a certain counter, according to settings of common energy exponent.

An example for 12.345kWh of consumed active energy:

Common energy exponent	0	2	2
Counter divider	1	1	100
Example of result, display	12.345 kWh	12.3 kWh	0.01 MWh

3.10 Inputs and outputs

Module settings depend on built-in modules.

3.10.1 Analogue output module 🖻

Each of up to four analogue outputs is fully programmable and can be set to any of 6 ranges. <u>Output parameter</u>

Set the measured parameter to be transformed onto the analogue output.

Output range

Defines analogue output full-scale ranges:

DC current output	DC voltage output
-101 mA	-101 V
-505 mA	
-10010 mA	-10010 V
-20020 mA	

Output signal

Defines the shape and up to 5 break points of an analogue output. For intrinsic-error for analogue outputs with bent or linear zoom characteristic multiply accuracy class with correction factor (c). Correction factor c (the highest value applies):

Linear characteristic	Bent characteristic
$1 - \frac{y_0}{y}$	$x_{b-1} \leq x \leq x_b$ b – number of break points (1 to 5)
$c = \frac{y_e}{1 - \frac{x_0}{x_e}} or c = 1$	$c = \frac{y_b - y_{b-1}}{x_b - x_{b-1}} \cdot \frac{x_e}{y_e}$ or $c = 1$

Limit of the output range

Average interval for analogue output

Defines the average interval for measurements on the analogue output. Available settings are from 1 period (0.02 sec by 50 Hz) up to 256 periods (5.12 sec by 50 Hz).

3.10.2 Alarm/Digital output module 🖻

Alarm groups that are connected with an alarm module and a signal shape are defined.

An alarm module can also function as a pulse output with limited pulse length (min. 10 ms) or general purpose digital output. Other parameters are defined in the same way as at a pulse module. A parallel RC filter with time constant of at least 250 μ s (R·C \geq 250 μ s) should be used in case of a sensitive pulse counter. RC filter attenuates relay transient signals.

Signal shape:

- Normal A relay is closed until condition for the alarm is fulfilled.
- Normal inverse A relay is open until condition for the alarm is fulfilled.
- Holds A relay is closed when condition for the alarm is fulfilled, and remains closed until it is reset via communication.
- Pulse an impulse of the set length is sent always when condition for the alarm is fulfilled.
- Always switched on / off (permanent) A relay is permanently switched on or off irrespective of the condition for the alarm.

USER INFORMATION

Digital output functionality. Permanent alarm setting enables remote control via communication.

3.10.3 Pulse output module 🖻

A corresponding energy counter can be assigned to a pulse output. A number of pulses per energy unit, pulse length, and a tariff in which output is active are set.

WARNING!

Pulse parameters are defined by SIST EN 62053–31 standard. In chapter Calculation of recommended pulse parameters, below a simplified rule is described to assist you in setting the pulse output parameters.

The pulse module can also function as an alarm output with limited current load (max. 20 mA).

Calculation of recommended pulse parameters

Number of pulses per energy unit should be in certain limits according to expected power. If not so the measurement from pulse output can be incorrect. Settings of current and voltage transformers can help in estimation of expected power.

Principle described below for pulse setting, where e is prefix, satisfies SIST EN 62053–31: 2001 standards pulse specifications:

 $1,5...15 \text{ eW} \rightarrow 100 \text{ p/l eWh}$

Examples:

\rightarrow	Pulse output settings
\rightarrow	1 p/1 kWh
\rightarrow	100 p/1 MWh
\rightarrow	10 p/1 MWh
\rightarrow	1 p/1 MWh
	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$

3.10.4 Digital input module 🖻

No setting. General purpose digital input can be used for various alarms function.

3.10.5 Watchdog output module 🖻

The purpose is to detect potential malfunction of transducer or auxiliary power supply failure. This module can be set for normal operation (relay in close position) or for test purposes to open position (manual activation). After test module should be set back to normal operation.

3.11 Alarms

Alarms are used for alarming exceeded set values of the measured quantities.

◀ – iMT510/516/518 do not support alarms recording into memory.

3.11.1 Alarms setting 🖻

Measuring transducer supports recording and storing of 16 alarms in 2 groups. For each group of alarms a delay time and alarm deactivation hysteresis can be defined.

Quantity, value and a condition for alarm switch-on are defined for every individual alarm.

New values of alarms are calculated in percentage at modification of connection settings.

3.11.2 Types of alarms

Alarm output (pulse)

WARNING!

According to the alarm signal shape the output relay will behave as shown on figure below.

3.12 **Memory •000**

Measurements, alarms, reports and details of supply voltage quality are stored in a built in memory in the iMT511 - 8MB flash. All records stored in memory are accessible via communication with MiQen software.

O - iMT510/516/518 have no memory

3.12.1 Memory division 🖻

Memory is divided into 3 partitions which size is defined by the user. The A and B recorders are intended for recording measurements, while all alarms that occurred are recorded in an alarm partition.

3.12.1.1 *Memory operation*

Memory functions in a cyclic mode in compliance with the FIFO method. This means that only the latest records are stored in the memory that will replace the oldest ones. A number of stored data or a storing period depends on selected partition size, a number of recorded quantities and time of division sampling.

3.12.1.2 Memory clearing 📼

There is usually no need to clear the memory, because it works in cyclic mode. If you want to clear memory data anyway, the data storing must be stopped first. Read the instrument settings with MiQen and set "Recorder state" in Memory setting group to "stopped". Download changes to the device and open Memory info form and then click on Clear memory button. Select memory partitions to be cleared on Memory clearing form and click on OK button. Set "Recorder state" setting back to "active".

3.13 Reset operations

◀ – iMT510/516/518 do not support some measurements for reset.

3.13.1 Reset energy counters (E1, E2, E3, E4) 🖻

All or individual energy meters are reset.

3.13.2 Reset maximal MD values 🖻

Current and stored MDs are reset.

3.13.3 Reset the last MD period 🖻

Current MD value is reset.

3.13.4 Reset alarm output 🖻

All alarms are reset.

4 MEASUREMENTS

In the following chapters the device operation is explained more in detail.

SUPPORTED MEASUREMENTS	28
EXPLANATION OF BASIC CONCEPTS	28
Calculation and display of measurements $lacksquare{}$	29
Present values ••••	29
	30
WEB INTERFACE	31
	SUPPORTED MEASUREMENTS EXPLANATION OF BASIC CONCEPTS CALCULATION AND DISPLAY OF MEASUREMENTS IMPRESENT VALUES IMPRES

4.1 Supported measurements

Measurements support regarding the device type is described in chapter Type differences, page 5. Selection of supported measurements of individual instrument type is changed with the connection settings. All supported measurements could be read via communication (MiQen).

4.2 Explanation of basic concepts

4.2.1 Sample factor – M_V

A meter measures all primary quantities with the sample frequency of 6.991 kHz. The minimum of 107 samples must be in the calculation period. Based on these limitations ($65Hz \cdot 107$ samples) a sample factor is calculated. A sample factor (M_V), depending on frequency of a measured signal, defines a number of periods for a measurement calculation and thus a number of harmonics considered in calculations.

4.2.2 Average interval – M_P

Due to readability of measurements from communication, an Average interval (M_P) is calculated with regard to the measured signal frequency. The Average interval (see chapter Average interval) defines refresh rate of displayed measurements based on a sampling factor.

4.2.3 Power and energy flow

Figures below show a flow of active power, reactive power and energy.

4.4 Calculation and display of measurements

This chapter deals with capture, calculation and display of all supported quantities of measurement. Only the most important equations are described; however, all of them are shown in chapter Equations with additional descriptions and explanations.

◀ – iMT516/518 do not have all described measurements supported (see chapter Type differences).

PLEASE NOTE

Calculation and display of measurements depend on the device type. For more detailed information see chapter Type differences.

4.5 Present values ••••

4.5.1 Voltage 🖻

Instrument measures real effective (rms) value of phase voltage (U1), connected to the meter. Voltage measurement is available via communication.

4.5.2 Current 📧

Instrument measures real effective (rms) value of phase currents, connected to current input. Current measurement is available via communication.

4.5.3 Active, reactive and apparent power 🖻

Active power is calculated from instantaneous phase voltages and currents. All measurements are seen via communication or are displayed on remote display. For more detailed information about calculation see chapter Equations.

4.5.4 Power factor and power angle 🖻

Power factor is calculated as quotient of active and apparent power $(\cos \phi)$. For correct display of PF via analogue output and application of the alarm, ePF (extended power factor) is applied. It illustrates power factor with one value as described in the table below.

Example of analogue output for PF and ePF:

Power angle represents angle between first voltage harmonic and first current harmonic. A positive sign shows inductive load, and a negative sign shows capacitive load.

4.5.5 Frequency 🖻

Network frequency is calculated from time periods of measured voltage.

4.5.6 Energy 🖻

Four individual counters of energy measurements are available.

4.5.7 MD values 🖻

Measurements of MD values.

4.5.8 THD – Total harmonic distortion 🖻

THD is calculated for phase currents, phase voltages and is expressed as percent of high harmonic components relative to first harmonic.

Instrument uses measuring technique of real effective (rms) value that assures exact measurements with the presence of high harmonics up to 53rd harmonic.

4.6 Alarms

required, yearly reports have to reset manually.

In order to reset reports choose setting Power supply quality / Monitoring mode and change the value to "No monitoring". Download settings to instrument. Then choose the same setting in change the value back to "EN50160". Again download settings to instrument. Now all yearly reports (anomaly counters) are reset.

4.7 WEB Interface

A built-in WEB interface is intended to view settings and teal-time measurements without additional SW such as MiQen.

4.7.1 Settings Page

MC WEB Management

Info	Measurements	Energy Counters				
Settin	g	Value				
Model	number	iMT550 Recorder				
Serial	number	MT091402				
Softwa	are version	1.27				
Hardw	are version	Α				
Calibra	ation Voltage	500V				
Voltag	e Autorange	Yes				
Calibra	ation current	5A				
Currer	nt Autorange	Yes				
Accura	acy class	0.20				
LCD Ty	уре	128 X 64 Amber Negativ				
Power	supply	Universal AC: 80V - 276V; DC: 70V - 300V				
Comm	unication type	8 Mb Flash				
Memo	ry size	8 Mb Flash				
Input	/ Output 1	Jumperless Analog Output				
Input	/ Output 2	Jumperless Analog Output				
Input	/ Output 3	Jumperless Analog Output				
Input	/ Output 4	Jumperless Analog Output				
Inputs	s / Outputs A	-				
Inputs	s / Outputs B	-				
Inputs	s / Outputs C	-				
Last C	onfiguration dat	te 15.04.2021				
Calibra	ation date	16.02.2021				
Last U	pgrade date	16.02.2021				
MAC A	ddress	00:1B:DF:00:2B:08				
ETH m	odule SW Versio	Version 10.0				
IP Add	Iress	10.64.2.133				
15.04.202	21 10:06:00					

Web management settings page

4.7.2 Measurements Page

MC WEB Management

Info	Measurements E	nergy Counters				
Measu	rement	11	L2	L3	Total	Others
Voltag	le	0.000 V	11.984 V	9.818 V		7.683 V
Curren	nt	0.00 mA	0.00 mA	0.00 mA	0.00 mA	0.00 mA
Real P	ower	0.0000 W	0.0000 W	0.0000 W	0.0000 W	
Reacti	ve Power	0.0000 var	0.0000 var	0.0000 var	0.0000 var	
Appar	ent Power	0.0000 VA	0.0000 VA	0.0000 VA	0.0000 VA	
Power	Factor	1.0000 Ind	1.0000 Ind	1.0000 Ind	1.0000 Ind	
Power	Angle	0.00	0.00	0.00	0.00	
THD-U	lp	19.61%	19.43%	9.85%		
THD-I		0.00%	0.00%	0.00%		
Freque	ency	49.956 Hz				
Phase	to phase measure	ements L1 - L2	L2 - L3	L3 - L1	Total	Others
Phase	to phase Voltage	11.156 V	16.439 V	10.757 V		12.784 V
Phase	angle	-41.76	-96.65	138.40		
THD-U	lpp	22.57%	19.35%	8.55%		
15.04.	2021 10:04:45					

Web management measurements page

4.7.3 Energy Counters Page

MC WEB Management

Info	Measurements	Energy Count	ers		
Energ	y Counters	Counter E1	Counter E2	Counter E3	Counter E4
Total		0.04 kWh	0.82 kvarh	0.00 kWh	0.02 kvarh
Tariff	1	0.04 kWh	0.82 kvarh	0.00 kWh	0.02 kvarh
Tariff	2	-0.01 kWh	-0.01 kvarh	-0.01 kWh	-0.01 kvarh
Tariff	3	-0.01 kWh	-0.01 kvarh	0.00 kWh	-0.01 kvarh
Tariff	4	0.00 kWh	0.02 kvarh	0.00 kWh	0.00 kvarh
15.04	2021 10:05:11				

Web management energy counters page

5 BATTERY REPLACEMENT

The Measuring transducer contains a lithium battery. It is used to preserve data (date and time) in the device memory when if the power supply is off. Life time of battery is app.6 years (typical). High temperature and humidity shortens the battery's functionality. Battery has no effect on other functionality of the device, except date and time.

It is recommended that the instrument is sent back in the factory for battery replacement. Although it is possible that replacement is made by the qualified person, but in this case Iskra d.o.o. does not take on responsibility for any injuries, dysfunction of the instrument or mechanical damage.

5.1 Instructions for replacement

- 1 Disconnect the instrument from measuring grid and power supply (read the safety section) and take it out of the mounting rail.
- 2 With flat screwdriver remove the cover [3] from instrument [1] (see picture below).
- **3** Pull out printed circuit board (PCB) assembly [2].
- 4 Remove the battery from its holder on the PCB and replace it with the same model (Varta, type 6032 CR2032 SLF).

5 To put the instrument together replay steps from 2 to 3 in inverse order.

WARNING

You should set device date and time again after replacing the battery.

6 TECHNICAL DATA

In following chapter all technical data regarding operation of multifunction transducers is presented.

6.1	Accuracy	35
6.2	MECHANICAL CHARACTERISTICS OF INPUT ●●●●	36
6.3	Electrical characteristics of input $lacet$	36
6.4	I/O MODULES ●●●●	37
6.5	Analogue output	37
6.6	Communication ●●●●	38
6.7	ELECTRONIC FEATURES	38
6.8	Safety features ●●●●	39
6.9	Dimensions $igodoldsymbol{\Theta}$	40

6.1 **Accuracy**

Total accuracy (measurements and analogue output) according to IEC/EN 60 688 is presented as percentage of range except when it is stated as an absolute value.

Measured values	Range		Accuracy class*
Rms current I ₁	250 mA – 6 A (common I _n 1 A or 5 A)		0.2 (0.1)**
Maximum current	12.5 A		0.2 (0.1)**
Rms voltage U ₁	50 - 500 V _{L-N}		0.2 (0.1)**
Maximum voltage	600 V _{L-N}		0.2 (0.1)**
Frequency (f) – actual	50 / 60Hz		10 mHz
Nominal frequency range	16400 Hz		10 mHz
Power angle (φ)	-1800180°		0.1°
	-10+1		
Power factor (PE)	$U = 50 \dots 120 \% U_n$		
	$I = 2 \% \dots 20 \% I_n$		0.5
	$I = 20 \% \dots 200 \% I_n$		0.1
	75	375	
	120	600	
Maximal values (MD)	250	1250	10
	500	2500	1.0
	[W/var/VA]	[W/var/VA]	
	$I_n = 1 A$	$I_n = 5 A$	
	5500 V		
THD	0.110A		0.5
	0400 %		
Active power	75	375	0.2 (0.2)**
	120	600	
Reactive power	250	1250	0.2 (0.2)**
	500	2500	
Apparent power	[W/var/VA]	[W/var/VA]	0.2 (0.2)**
	$I_n = 1 A$	$I_n = 5 A$	
Active energy			Class 1 (Option 0.5S)
Reactive energy			Class 2
Real time clock (RTC)	-		1 min/month
Analogue output (internal supply)	-20+20 mA		± 20 μA
, analogue output (internal supply)	-10+10 V		± 10mV

PLEASE NOTE

* - All measurements are calculated with high harmonic signals.

** - Measurements on communication.

6.2 Mechanical characteristics of input

6.2.1 Permitted conductor cross-sections

Terminals	Max. conductor cross-sections DIN / ANSI housing
Voltage inputs (2)	0.325 mm ² 2.5 mm ² (22 – 14 AWG) one conductor
Current inputs (2)	0.325 mm ² 2.5 mm ² (22 – 14 AWG) one conductor
Supply (3)	0.325 mm ² 2.5 mm ² (22 – 14 AWG) one conductor
Modules (2 x 2)	0.325 mm ² 2.5 mm ² (22 – 14 AWG) one conductor
Communication (2)	0.325 mm ² 2.5 mm ² (22 – 14 AWG) one conductor

6.3 Electrical characteristics of input

Voltage input		
	Rated voltage (U _N)	57.7500 V _{L-N}
	Max. allowed value	$1.2 \times U_N$ permanently, $2 \times U_N$ 10 s
	Minimal measurement	2 V sinusoidal
	Maximal measurement	600 V _{L-N}
	Input impedance	4.2MΩ
	Consumption	U² / 4.2MΩ
Current input		
	Rated current (I _N)	0.315 A
	Max. allowed value (thermal)	15 A continuous
		$20 \times I_N (5 \times 1s)$
	Min. measurement	Settings from starting current for all powers*
	Max. measurement	12.5 A sinusoidal
	Consumption	$l^2 \times 0.01 \Omega$
Frequency		
	Rated frequency (f_N)	50, 60 Hz
	Measuring range	16400 Hz
	Maximum range	10 Hz1 kHz
Power supply		
Universal HIGH	AC Rated voltage	80276 V
	AC Rated frequency	4070 Hz
	DC Rated voltage	70300 V
	Consumption	< 5VA
	Power-on transient current	< 20 A; 1 ms
Universal LOW	AC Rated voltage	48 V77 V
	AC Rated frequency	40 Hz70 Hz
	DC Rated voltage	19 V70 V
	Consumption	< 5VA
	Power-on transient current	< 20 A; 1 ms

* Starting current is set by setting software MiQen/settings/general

6.4 I/O modules

 $\bullet\bullet\bullet\bullet\bullet$

Alarm/Digital/			
Watchdog output module	Туре	Relay switch	
	Rated voltage	48 V AC/DC (+40% max)	
	Max. switching current	200 mA	
	Contact resistance	≤ 100 mΩ (100 mA, 24V)	
	Impulse	Max. 4000 imp/hour	
		Min. length 100 ms	
	Signal shape		
	Normal	Until the condition is fulfilled	
	Impulse	Start at any new condition	
	Permanent	Since condition	
Pulse output module			
	Туре	Solid state	
	Max. voltage	40 V AC/DC	
	Max. current	30 mA (R _{ONmax} = 8Ω)	
	Pulse length	programmable	
		21000 ms	
Digital input module			
	Rated voltage	48 V AC/DC (+ 40% max)	
	Max. current	< 1.5 mA	
	Min. signal width	20 ms	
	Min. pause width	40 ms	
	SET voltage	40120 % of rated voltage	
	RESET voltage	010 % of rated voltage	
0.5 Analogue ou			
General			
	Linearization	Linear, Quadratic -	
	No. of break points	5	
	Output value limits	\pm 120% of nominal output	
	Response time	$input \rightarrow output$	< 100 ms
DC Current		< 0.5 % p.p.	
DC Current	Output range values	100 0 100%	
σαιραι	1 0 1 mA	-1000100%	
	-101 MA	Range 2	
	-10 0 10 mA	Range 3	
	-20020 mA	Range 4	
	Other ranges	possible by MiQen software	
	Burden voltage	10 V	
	External resistance	RB _{max} =10 V / I _{outN}	
DC Voltage			
output	Output range values	-1000100%	
	-101 V	Range 5	
	-10010 V	Range 6	
	Other ranges	possible by MiOen software	
	other runges	poolizie zy migen objenare	
	Burden current	5 mA	

6.6 **Communication**

Туре	Ethernet	RS232 ⁽¹⁾	RS485 ⁽¹⁾	USB
Type of connection	Network	Direct	Network	Direct
Max. connection length	-	3 m	1000 m	-
Number of bus stations	-	-	≤32	-
Terminals	RJ-45	DB9 ⁽¹⁾ / Screw terminals ⁽¹⁾		USB-B
Insulation	Protection class I, 3.3 kV _{ACRMS} 1 min			
Transfer mode		Asynchronous		
Protocol	MODBUS TCP	MODBUS RTU		
Transfer rate	10/100Mb/s auto detect	2.400 to 1	115.200 bit/s	USB 2.0

0(((

I

⁽¹⁾ Both types of comm. are available but only one at a time

6.7 Electronic features

Response time

Battery

Input \rightarrow communication

All calculations are averaged over an interval of between 8 to 256 periods. Preset interval is 64 periods, which is 1.28 second at 50 Hz. Average interval below 64 periods may result to	unstable measurements, depended on measuring signal.
	All calculations are averaged over an interval of between 8 to 256 periods. Preset interval is 64 periods, which is 1.28 second at 50 Hz. Average interval below 64 periods may result to

Manufacturer	Varta
Туре	CR2032 Li-battery
Battery lifetime	Approx. 6 years (at 23°C – typical)
Memory	iMT511
Capacity	8 MB
	Recorder A
Divisions	Recorder B
	Alarms recorder
Sampling period	1 min to 60 min
	·

Status LED's		
СОМ	Green	Communication in progress
PWR	Red	Instrument power ON

6.8 Safety features ••••

Protection	Protection class I
	(protective earth terminal due to touchable metal parts (USB-B, RJ-45, DB9), current
	limiting fuse 1 A on aux. Supply (L terminal)
$\mathbf{\Lambda} \oplus$	Voltage inputs via high impedance
	Double insulation on I/O ports and COM1-2 ports
Pollution degree	2
Installation category	CAT III; 600 V≟ meas. Inputs Acc. to EN 61010-1
	CAT III; 300 V $_{\pm}$ aux. supply Acc. to EN 61010-1
Test voltages	U _{AUX} ↔J/O, COM1, 2: 2210 VAC _{rms}
	$U_{AUX} \leftrightarrow U$, I inputs: 3320 VAC _{rms}
	U, I inputs↔I/O, COM1, 2: 3320 VAC _{rms}
	HV Tariff input↔I/O, COM1, 2: 2210 VAC _{rms}
	U inputs↔I inputs: 3320 VAC _{rms}
EMC	Directive on electromagnetic compatibility 2004/108/EC
	Acc. to EN 61000-6-2 and EN 61000-6-4
Ambient conditions	
Ambient temperature	usage group II
	0 <u>1530</u> 55 ℃
	Acc. to IEC/EN 60 688
Operating temperature	-30 to +70 °C
Storage temperature	-40 to +70 °C
Average annual humidity	≤93% r.h.
Enclosure	
DIN	ABS & PC (transparent sliding cover; PC) – self-extinguishability, in compliance with UL
ANSI	94 V0
RD500	
Enclosure protection	IP 40 (IP 20 for terminals)
Flammability	Acc. to UL 94 V-0
Mounting	Rail mounting 35 × 15 mm acc. to DIN EN 50 022
Dimensions	100 × 127 ×75 mm
Weight	375 g

6.9 Dimensions

7 ABBREVIATION/GLOSSARY

Abbreviations are explained within the text where they appear the first time. Most common abbreviations and expressions are explained in the following table:

Explanation
Industrial protocol for data transmission
Setting Software for ISKRA instruments
Pulse input module
Alternating quantity
Infrared (optical) communication
Temperature sensor
Root Mean Square
Pulse output
Power angle (between current and voltage)
Power factor
Type of a memory module that keeps its content in case of power supply failure
IEEE 802.3 data layer protocol
Angle calculated from total active and apparent power
Angle between fundamental phase voltage and phase current
Total harmonic distortion
Measurement of average values in time interval
Graphical display of presence of harmonics
Sine voltage with frequency equal to integer multiple of basic frequency
Connection spot of consumer installation in public network
Voltage fluctuation causes changes of luminous intensity of lamps, which causes the so-
called flicker
Real Time Clock
Defines a number of periods for measuring calculation on the basis of measured frequency
Defines frequency of refreshing displayed measurements on the basis of a Sample factor
Percentage specifies increase or decrease of a measurement from a certain limit after
exceeding it
Tariff input module
Alarm output module
Analogue output module
Analogue input module
Digital output module
Digital input module
2nd communication port module

List of common abbreviations and expressions

In this chapter you will find

- 8.1 APPENDIX A: MODBUS COMMUNICATION PROTOCOL
- 8.2 APPENDIX C: CALCULATIONS & EQUATIONS

42 49

8.1 APPENDIX A: MODBUS communication protocol

Modbus and DNP3 protocol are enabled via RS232 and RS485 or Ethernet communication.

8.1.1 Modbus

There are two Modbus protocol types: Modbus RTU for serial communication and Modbus TCP for Ethernet communication. Modbus protocol enables operation of device on Modbus networks. For device with serial communication the Modbus protocol enables point to point (for example Device to PC) communication via RS232 communication and multi drop communication via RS485 communication. Modbus protocol is a widely supported open interconnect originally designed by Modicon.

The memory reference for input and holding registers is 30000 and 40000 respectively.

REGISTER TABLE FOR THE ACTUAL MEASUREMENTS

The tables below represent the complete set of MODBUS register map.

	MODBUS		
Parameter	Register		Turne
	Start	End	Туре
Actual measurements			
Frequency	34101	34102	T5
U1	34103	34104	T5
11	34105	34106	T5
Active Power (P1)	34107	34108	Т6
Reactive Power (Q1)	34109	34110	Т6
Apparent Power (S1)	34111	34112	T5
Power Factor (PF1)	34113	34114	Τ7
arphi1 (angle between U1 and I1)	34115		T17
Internal Temperature	34116		T17
U1 THD%	34117		T16
I1 THD%	34118		T16
Alarm Status Flags (No. 116)	34119		T1
I/O 1 Value	34121		T17
I/O 2 Value	34122		T17
Energy			
Energy Counter 1 Exponent	34201		T2
Energy Counter 2 Exponent	34202		T2
Energy Counter 3 Exponent	34203		T2
Energy Counter 4 Exponent	34204		T2
Energy Counter 1	34206	34207	Т3
Energy Counter 2	34208	34209	Т3
Energy Counter 3	34210	34211	Т3
Energy Counter 4	34212	34213	Т3

	MODBUS		
Parameter	Register		_
	Start	End	Туре
Demand values			
Dynamic demand values			
U1	34302	34303	T5
11	34304	34305	T5
Apparent Power (Sn)	34306	34307	T5
Active Power (Pn) - (positive)	34308	34309	Т6
Active Power (Pn) - (negative)	34310	34311	T6
Reactive Power (Qn) - L	34312	34313	<i>T6</i>
Reactive Power (Qn) - C	34314	34315	<i>T6</i>
Max demand since last reset			
U1	34316	34317	<i>T5</i>
11	34318	34319	<i>T5</i>
Apparent Power (Sn)	34320	34321	<i>T5</i>
Active Power (Pn) - (positive)	34322	34323	<i>T6</i>
Active Power (Pn) - (negative)	34324	34325	<i>T6</i>
Reactive Power (Qn) - L	34326	34327	<i>T6</i>
Reactive Power (Qn) - C	34328	34329	<i>T6</i>
Normalized measurements			
Actual measurements			
U1	34401		T16
11	34402		T16
Active Power (P1)	34403		T17
Reactive Power (Q1)	34404		T17
Apparent Power (S1)	34405		T16
Power Factor (PF1)	34406		T17
CAP/IND P. F. (PF1)	34407		T17
φ 1 (angle between U1 and I1)	34408		T17
Frequency	34409		T17
I1 THD%	34410		T16
U1 THD%	34411		T16
Max demand since last reset			
Active Power (Pn) - (positive)	34412		T16
Active Power (Pn) - (negative)	34413		T16
Reactive Power (Qn) - L	34414		T16
Reactive Power (Qn) - C	34415		T16
Apparent Power (Sn)	34416		T16
11	34417		T16
U1	34418		T16
Dynamic demand values			
Active Power (Pn) - (positive)	34419		T16
Active Power (Pn) - (negative)	34420		T16
Reactive Power (Qn) - L	34421		T16
Reactive Power (Qn) - C	34422		T16
Apparent Power (Sn)	34423		T16

lskra®

Type T16 T16

T17 T17 T17 T17 T17 T17

T16 T17 T17 T17 T16 T17 T17 T17

End

	440000
Darameter	MODBUS
Futumeter	Start
11	31/12/
U1	34425
Energy	54425
Energy Energy Counter 1	31176
Energy Counter 2	34420
Energy Counter 3	34428
Energy Counter 4	34429
Internal Temperature	34430
FAST RESPONSE normalized actual measurements	s
U1	34501
11	34502
Active Power (P1)	34503
Reactive Power (Q1)	34504
Apparent Power (S1)	34505
Power Factor (PF1)	34506
CAP/IND P. F. (PF1)	34507
arphi1 (angle between U1 and I1)	34508
Frequency	34509
11 THD%	34510
U1 THD%	34511
MEASUREMENTS (IEEE 754)	
U1	34601
11	34603

Frequency	34509		T17
11 THD%	34510		T16
U1 THD%	34511		T16
MEASUREMENTS (IEEE 754)	<u>.</u>	·	
U1	34601	34602	T_float
11	34603	34604	T_float
Active Power (P1)	34605	34606	T_float
Reactive Power (Q1)	34607	34608	T_float
Apparent Power (S1)	34609	34610	T_float
Power Factor (PF1)	34611	34612	T_float
CAP/IND P. F. (PF1)	34613	34614	T_float
φ 1 (angle between U1 and I1)	34615	34616	T_float
Frequency	34617	34618	T_float
I1 THD%	34619	34620	T_float
U1 THD%	34621	34622	T_float
Max demand since last reset			
Active Power (Pn) - (positive)	34623	34624	T_float
Active Power (Pn) - (negative)	34625	34626	T_float
Reactive Power (Qn) - L	34627	34628	T_float
Reactive Power (Qn) - C	34629	34630	T_float
Apparent Power (Sn)	34631	34632	T_float
11	34633	34634	T_float
U1	34635	34636	T_float
Dynamic demand values			
Active Power (Pn) - (positive)	34637	34638	T_float
Active Power (Pn) - (negative)	34639	34640	T_float
Reactive Power (Qn) - L	34641	34642	T_float

	MODBUS		
Parameter	Register		
	Start	End	Туре
Reactive Power (Qn) - C	34643	34644	T_float
Apparent Power (Sn)	34645	34646	T_float
11	34647	34648	T_float
U1	34649	34650	T_float
Energy			
Energy Counter 1	34651	34652	T_float
Energy Counter 2	34653	34654	T_float
Energy Counter 3	34655	34656	T_float
Energy Counter 4	34657	34658	T_float
Internal Temperature	34659	34660	T_float

REGISTER TABLE FOR THE NORMALIZED ACTUAL MEASUREMENTS

Parameter	MODBUS		100% value
Fulumeter	Register	Туре	_ 100% Value
Actual measurements			
U1	34401	T16	Un
11	34402	T16	In
Active Power (P1)	34403	T17	Pn
Reactive Power (Q1)	34404	T17	Pn
Apparent Power (S1)	34405	T16	Pn
Power Factor (PF1)	34406	T17	1
CAP/IND P. F. (PF1)	34407	T17	1
arphi1 (angle between U1 and I1)	34408	T17	100°
Frequency	34409	T17	Fn+10Hz
I1 THD%	34410	T16	100%
U1 THD%	34411	T16	100%
Max demand since last reset			
Active Power (Pn) - (positive)	34412	T16	Pn
Active Power (Pn) - (negative)	34413	T16	Pn
Reactive Power (Qn) - L	34414	T16	Pn
Reactive Power (Qn) - C	34415	T16	Pn
Apparent Power (Sn)	34416	T16	Pn
11	34417	T16	In
U1	34418	T16	Un
Dynamic demand values			
Active Power (Pn) - (positive)	34419	T16	Pn
Active Power (Pn) - (negative)	34420	T16	Pn
Reactive Power (Qn) - L	34421	T16	Pn
Reactive Power (Qn) - C	34422	T16	Pn
Apparent Power (Sn)	34423	T16	Pn
11	34424	T16	In
U1	34425	T16	Un

🕸 Iskra®	
----------	--

Parameter	MODBUS		100% value
- Municici	Register	Туре	20070 Value
Energy			
Energy Counter 1	34426	T17	
Energy Counter 2	34427	T17	Actual counter value MOD 20000 is returned
Energy Counter 3	34428	T17	
Energy Counter 4	34429	T17	
Internal Temperature	34430	T17	100°

FAST RESPONSE normalized actual measurements

U1	34501	T16	Un
11	34502	T16	In
Active Power (P1)	34503	T17	Pn
Reactive Power (Q1)	34504	T17	Pn
Apparent Power (S1)	34505	T16	Pn
Power Factor (PF1)	34506	T17	1
CAP/IND P. F. (PF1)	34507	T17	1
arphi1 (angle between U1 and I1)	34508	T17	100°
Frequency	34509	T17	Fn+10Hz
11 THD%	34510	T16	100%
U1 THD%	34511	T16	100%

100% values calculations for normalized measurements

Un =	(R40147 / R40146) * R30015 * R40149
In =	(R40145 / R40144) * R30017 * R40148
Pn =	Un*In
Fn =	R40150

Register	Content
30015	Calibration voltage
30017	Calibration current

Register table for the basic settings

Register	Content	Туре	Ind	Values / Dependencies	Min	Мах	P. Level
40144	CT Secondary	T4		mA			2
40145	CT Primary	T4		A/10			2
40146	VT Secondary	T4		mV			2
40147	VT Primary	T4		V/10			2
40148	Current input range (%)	T16		10000 for 100%	5.00	200.00	2
40149	Voltage input range (%)	T16		10000 for 100%	2.50	100.00	2
40150	Frequency nominal value	T1		Hz	10	1000	2

DATA TYPES DECODING

Туре	Bit mask	Description
T1		Unsigned Value (16 bit)
		Example: 12345 = 3039(16)
T2		Signed Value (16 bit)
		Example: -12345 = CFC7(16)
τ2		Signed Long Value (32 bit)
15		Example: 123456789 = 075B CD15(16)
		Short Unsigned float (16 bit)
TA	bits # 1514	Decade Exponent(Unsigned 2 bit)
14	bits # 1300	Binary Unsigned Value (14 bit)
		Example: 10000*10 ² = A710(16)
		Unsigned Measurement (32 bit)
TE	bits # 3124	Decade Exponent(Signed 8 bit)
15	bits # 2300	Binary Unsigned Value (24 bit)
		Example: 123456*10 ⁻³ = FD01 E240(16)
		Signed Measurement (32 bit)
TC	bits # 3124	Decade Exponent (Signed 8 bit)
10	bits # 2300	Binary Signed value (24 bit)
		Example: - 123456*10 ⁻³ = FDFE 1DC0(16)
		Power Factor (32 bit)
	bits # 3124	Sign: Import/Export (00/FF)
Τ7	bits # 2316	Sign: Inductive/Capacitive (00/FF)
	bits # 1500	Unsigned Value (16 bit), 4 decimal places
		Example: 0.9876 CAP = 00FF 2694(16)
		Time (32 bit)
	bits # 3124	1/100s 00 - 99 (BCD)
TO	bits # 2316	Seconds 00 - 59 (BCD)
19	bits # 1508	Minutes 00 - 59 (BCD)
	bits # 0700	Hours 00 - 24 (BCD)
		Example: 15:42:03.75 = 7503 4215(16)
		Date (32 bit)
Т10	bits # 3124	Day of month 01 - 31 (BCD)
	bits # 2316	Month of year 01 - 12 (BCD)
	bits # 1500	Year (unsigned integer) 19984095
		Example: 10, SEP 2000 = 1009 07D0(16)
T16		Unsigned Value (16 bit), 2 decimal places
110		Example: 123.45 = 3039(16)

T17	Signed Value (16 bit), 2 decimal places
	Example: -123.45 = CFC7(16)
T_Str4	Text: 4 characters (2 characters for 16 bit register)
T_Str6	Text: 6 characters (2 characters for 16 bit register)
T_Str8	Text: 8 characters (2 characters for 16 bit register)
T_Str16	Text: 16 characters (2 characters for 16 bit register)
T_Str40	Text: 40 characters (2 characters for 16 bit register)

8.2 **APPENDIX C: CALCULATIONS & EQUATIONS**

Calculations

Definitions of symbols

No	Symbol	Definition
1	Μ _ν	Sample factor
2	M _P	Average interval
3	U _f	Phase voltage (U_1 , U_2 or U_3)
4	N	Total number of samples in a period
5	n	Sample number ($0 \le n \le N$)
6	i _n	Current sample n
7	U _{fn}	Phase voltage sample n
8	$arphi_{f}$	Power angle between current and phase voltage $f\left(arphi_{1},arphi_{2} ext{or}arphi_{3} ight)$
9	U _c	Agreed supply voltage

EQUATIONS

Voltage

$U_{f} = \sqrt{\frac{\sum_{n=1}^{N} u_{n}^{2}}{N}}$	Phase voltage N – samples in one period (up to 65 Hz) N – samples in M _v periods (above 65Hz) Example: 400 Hz \rightarrow M _v = 7
Current	
$I_{RMS} = \sqrt{\frac{\sum_{n=1}^{N} i_n^2}{N}}$	Phase current N – 128 samples in a period (up to 65 Hz) N – 128 samples in more periods (above 65 Hz)
Power	
$P = \frac{1}{N} \sum_{n=1}^{N} (un \times in)$	Active power by phases N – Total number of samples in a period n – a number of samples in a period
$SignQ_f(\varphi)$	Reactive power sign
$\varphi \in [0^{\circ} - 180^{\circ}] \rightarrow SignQ(\varphi) = +1$ $\varphi \in [180^{\circ} - 360^{\circ}] \rightarrow SignQ(\varphi) = -1$	Q _f – reactive power φ – power angle
	Apparent power
$S = U \times I$	U – phase voltage I – phase current
	Reactive power
$Q = SignQ(\varphi) \times \sqrt{S^2 - P^2}$	S – apparent power P – active power
$\varphi = a \tan 2 (P, Q)$ $\varphi = [-180^{\circ}, 179,99^{\circ}]$	Power angle P – active power S – apparent power
n	Power factor
$PF = \frac{F}{S}$	P – active power S – apparent power

THD

$I_{THD}(\%) = \frac{\sqrt{\sum_{n=2}^{N} In^2}}{I_1} 100$	Current THD I1 – value of first harmonic n – number of harmonic
$U_{THD}(\%) = \frac{\sqrt{\sum_{n=2}^{N} Un^2}}{U_1} 100$	Voltage THD U1 – value of first harmonic n – number of harmonic

Iskra, d.o.o. BU Ljubljana Stegne 21 SI-1000 , Ljubljana Phone: + 386 1 513 10 00

Iskra IP, d.o.o. Vajdova ulica 71 SI-8333 , Semič Phone: +386 7 384 94 54

Iskra Sistemi - M dooel Ul, Dame Gruev br. 16/5 kat 1000, Skopje Phone: +389 75 444 498

lskra, d.o.o. **BU Capacitors** Vajdova ulica 71 SI-8333 , Semič Phone: +386 7 38 49 200

lskra STIK, d.o.o. Ljubljanska cesta 24a SI-4000 , Kranj Phone: +386 4 237 22 33

Iskra Commerce, d.o.o. Hadži Nikole Živkoviča br. 2 11000, Beograd Phone: +381 11 328 10 41

lskra, d.o.o. BU MIS Ljubljanska c. 24a SI-4000 , Kranj Phone: +386 4 237 21 12

lskra Lotrič, d.o.o. Ljubljanska c. 24a SI-4000 , Kranj Phone: +386 4 237 21 12

Iskra Hong Kong Ltd. 33 Canton Road, T.S.T. 1705, China HK City Phone: +852 273 00 917 Iskra, d.o.o. **BU Batteries & Potentiometers** Šentvid pri Stični 108 SI-1296 , Šentvid pri Stični Phone: +386 1 780 08 00

lskra ODM, d.o.o. Ljubljanska c. 24a SI-4000 , Kranj Phone: +386 4 237 21 12 Iskra, d.o.o. **BU Electroplating** Glinek 5 SI-1291 , Škofljica Phone: +386 1 366 80 50

lskra Tela L, d.o.o. Omladinska 66 78250 , Laktaši Phone: +387 51 535 890

