GB

User's Manual

Measuring transducers:

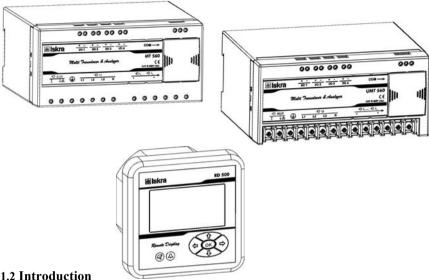
Transducer & Analyzer MT560/UMT560
Transducer & Recorder MT550/UMT550
Multifunction Transducer MT540/UMT540
Remote Display RD500

Table of Contents

Meaning of symbols O **●** see page 6!

1.	SECURITY ADVICE AND WARNINGS	1
	1.1 Welcome	
	1.2 Introduction	
	1.3 Health and safety	2
	1.4 Safety warnings and instructions for use	3
	1.5 Warnings, information and notes regarding designation of the product	4
2.	BASIC DESCRIPTION AND OPERATION OF MEASURING TRANSDUCER	5
	2.1 Introduction	
	2.2 Glossary	
	2.3 Description of the product	
	2.4 Purpose and use of different types of measuring transducers	9
	2.5 Type differences	10
3.	CONNECTION	13
	3.1 Introduction	
	3.2 Mounting	
	3.3 Electric connection	
	3.4 Connection of input/output modules •••	
	3.5 3.5 Communication connection	
	3.6 Connection of auxiliary power supply	20
	3.7 Remote display connection	20
4.	SETTINGS	21
	4.1 Introduction	
	4.2 MiQen software	
	4.3 Setting procedure	
	4.4 General settings •••	
	4.5 Connection •••	
	<i>4.6 Communication ●●●</i>	
	4.7 Security •••	
	4.8 Energy	
	4.9 Inputs and outputs	
	4.10 Alarms	
	4.11 Memory 000	
	4.12 Conformity of voltage with SIST EN 50160 standard OO●	
	4.13 Reset operations 100	47

5.	MEASUREMENTS	44
	5.1 Introduction	
	5.2 Supported measurements	45
	5.3 Available connections	45
	5.4 Explanation of basic concepts	48
	5.5 Calculation and display of measurements	49
	5.6 Present values ••••	
	5.7 Min/Max values •••	
	5.8 Alarms •••	
	5.9 Power supply quality OO●	
6.	COMMUNICATION MODES	55
	6.1 PULL communication mode	
	6.2 PUSH communication mode	56
7.	REMOTE DISPLAY FEATURES	58
	7.1 Remote display	59
	7.2 Remote display settings	
	7.3 Remote mode	60
8.	BATTERY REPLACEMENT	63
9.	TECHNICAL DATA	64
	9.1 Accuracy	65
	9.2 Inputs	66
	9.3 Connection	
	9.4 I/O modules	
	9.5 Communication	
	9.6 Electronic features	
	9.7 Safety features	
	9.8 Remote display	
	9.9 Dimensions	72
10.	APENDIX A: MODBUS PROTOCOL	73
	10.1 Modbus communication protocol	74
11.	APPENIX B: DNP3 PROTOCOL	80
	11.1 DNP3 communication protocol	81
12.	APPENIX C: CALCULATIONS & EQUATIONS	
	12.1 Calculations	
	12.2 Equations	87
13.	APPENIX D: DATA FORMATS	90
	13.1 XML data format	91


1. SECURITY ADVICE AND WARNINGS

1.1 Welcome	2
1.2 Introduction	2
1.3 Health and safety	2
1.4 Safety warnings and instructions for use	3
1.5 Warnings, information and notes regarding designation of the product	4

1.1 Welcome

Please read this chapter carefully before starting work with a Measuring transducer.

This chapter deals with important information and warnings that should be considered for safe work with a Measuring transducer.

This booklet contains instructions for installation and use of Measuring transducers MT560, MT550, MT540, UMT560, UMT550, UMT540 and Remote display RD500. Installation and use of devices also includes handling with dangerous currents and voltages and shall therefore be carried out by qualified persons. The Iskra MIS Company assumes no responsibility in connection with installation and use of the product. If there is any doubt regarding installation and use of the system in which the instrument is used for measuring or supervision, please contact a person who is responsible for installation of such system.

1.3 Health and safety

The purpose of this chapter is to provide a user with information concerning safe installation and handling with the product in order to assure its correct use and continuous operation.

It is essential that everyone using the product is familiar with the contents of chapter »Security Advices and Warnings«.

If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

1.4 Safety warnings and instructions for use

Check the following before switching on the device:

- Nominal voltage,
- Proper connection of auxiliary supply,
- Nominal frequency,
- Voltage ratio and phase sequence,
- Current transformer ratio and terminals integrity,
- Protection fuse recommended maximal external fuse size is 6 A,
- Integrity and proper connection of earth protective terminals (where necessary)

Important: A current transformer secondary should be short circuited before connecting the transducer.

Battery replacement

Some instruments are equipped with a built-in battery. When empty, replace with a corresponding type (Varta, type 6032 CR2032 SLF or equivalent). A battery shall be replaced by an authorized service. The battery lifetime is approx. 6 years. Instruction on battery replacement is given in chapter 8: Battery replacement, page 63.

Waste

It is forbidden to deposit electrical and electronic equipment as municipal waste. The manufacturer or provider shall take waste electrical and electronic equipment free of charge. The complete procedure after lifetime should comply with the Directive EZ 2002/96/EG about restriction on the use of certain hazardous substances in electrical and electronic equipment or a corresponding Url 118/04.

1.5 Warnings, information and notes regarding designation of the product

Used symbols:

See product documentation.

Double insulation in compliance with the SIST EN 61010-1 standard.

Protective conductor terminal. Terminal which is bonded to conductive parts of an instrument for safety purposes and is intended to be connected to an external protective earthing system.

Functional ground potential.

Note: This symbol is also used for marking a terminal for protective ground potential if it is used as a part of connection terminal or auxiliary supply terminals.

Compliance of the product with directive 2002/96/EC, as first priority, the prevention of waste electrical and electronic equipment (WEEE), and in addition, the reuse, recycling and other forms of recovery of such wastes so as to reduce the disposal of waste. It also seeks to improve the environmental performance of all operators involved in the life cycle of electrical and electronic equipment.

Compliance of the product with European CE directives.

Contents of consignment

The consignment includes:

- Measuring transducer MT560, MT550, MT540, UMT560, UMT550, UMT540
- Quick guide

Or

- Remote display RD500
- Connection cable
- Quick guide

2. BASIC DESCRIPTION AND OPERATION OF MEASURING TRANSDUCER

2.1 Introduction	6
2.2 Glossary	- 7
2.3 Description of the product	8
2.4 Purpose and use of different types of measuring transducers	9
2.5 Type differences	- 10

2.1 Introduction

Regarding the type of measuring transducer different chapters should be considered since the types differ in functionality and design. More detailed description of device functions is given in chapter Type differences, pages 10 to 12. Al types of measuring transducers are available in DIN or ANSI housing. Instruments in DIN housing are marked as types MT5xx; instruments in ANSI housing are marked as types UMT5xx. Specifications of housing for both types are specified in chapter Dimensions on page 72.

Description of symbols

In different chapters or tables different symbols may appear in User's Manual. According to the position of symbols, they have different meaning.

Chapter

Due to differences among devices, some chapters do not relate to your instrument. Five symbols next to chapter heading are for faster surveying. Type of symbol indicates to which extent the chapter applies for each type of measuring transducer. Meaning of each symbol is:

O – Function not supported

Function partially supported (see a note)

Function completely supported

Each of the three positions, where the symbols are indicates a Measuring transducer type. Positions follow from left to right:

(U)MT540 / (U)MT550 / (U)MT560

Subchapter

Symbols next to the subchapters indicate accessibility of functions described. Accessibility of functions is indicated with the following symbols:

- Function accessible via communication (MiQen software)
- Function accessible via navigation keys on remote display RD500

Tables

Supported functions and measurements are listed in tables for all types. Symbols in tables indicate support of enabled functions for each type. Additionally a legend is placed below table of used symbols. Meaning of symbols is:

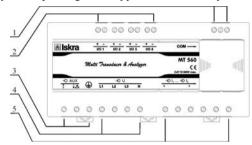
- Function is supported
- × Function is not supported
- Symbol meaning varies and is described in the legend below the table

User information

For unknown technical terms please refer to Glossary on the next page.

2.2 Glossary

Term	Explanation
RMS	Root Mean Square value
Flash	Type of a memory module that keeps its content in case of
riasn	power supply failure
Ethernet	IEEE 802.3 data layer protocol
MODBUS / DNP3	Industrial protocol for data transmission
MiQen	Software for Iskra MIS instruments
AC	Alternating voltage
PA total	Angle calculated from total active and apparent power
PA1, PA2, PA3	Angle between fundamental phase voltage and phase current
PF	Power factor
THD	Total harmonic distortion
MD	Measurement of average values in time interval
FFT graphs	Graphical display of presence of harmonics
Harmania valtaga harmania	Sine voltage with frequency equal to integer multiple of
Harmonic voltage – harmonic	basic frequency
Hand-over place	Connection spot of consumer installation in public network
Flicker	Voltage fluctuation causes changes of luminous intensity of
FIICKEI	lamps, which causes the so-called flicker
RTC	Real Time Clock
M _v – Sample factor	Defines a number of periods for measuring calculation on
W _V Sample factor	the basis of measured frequency
M _p – Average interval	Defines frequency of refreshing displayed measurements
1	on the basis of a Sample factor
Hysteresis expressed as	Percentage specifies increase or decrease of a measurement
percentage [%]	from a certain limit after exceeding it.
PO	Pulse output module
PI	Pulse input module
TI	Tariff input module
AL	Alarm output module
AO	Analogue output module
AI	Analogue input module
DO	Digital output module
DI	Digital input module
COM2	2 nd communication port module


2.3 Description of the product

Measuring transducer is intended for measuring, analyzing and monitoring single-phase or three-phase electrical power network. It measures RMS value by means of fast sampling of voltage and current signals, which makes instrument suitable for acquisition of transient events. A built-in microcontroller calculates measurements (voltage, current, frequency, energy, power, power factor, THD phase angles, etc.) from the measured signals.

Appearance

Measuring transducer can differ from yours depending on the type and functionality.

- 1 Communication ports and LED indicators
- 2 I/O modules
- 3 Auxiliary supply
- 4 Voltage inputs
- 5 Current inputs

Communication ports and LED indicators

Under the sliding, semitransparent cover are connectors for various communication types, which should be chosen at placing the order. Serial communication can be connected through DB9 connector (RS232 or RS485) or screw-in connector (RS485 only). Ethernet communication can be connected through standard RJ-45 type connector. USB can be connected through USB-B type connector. There is also additional communication port (RS485), which is intended for Remote display connection (RJ-11 type connector).

Two LED indicators are intended for POWER ON signaling (red LED) and COMMUNICATION IN PROGRESS signaling (green LED blinking).

I/O modules

Four I/O module slots are intended for various I/O modules, which should be chosen at placing the order. Tariff inputs, digital inputs, digital outputs, analogue inputs, analogue outputs, pulse inputs, pulse outputs alarm outputs, and additional (COM2) communication port.

Auxiliary supply

Auxiliary supply is connected through three screw-in connectors. For safety purposes it is important that all three wires (Line, Neutral and Earth) are firmly connected. Auxiliary supply can be either LOW (19 VDC – 70 VDC; 48 VAC – 77 VAC) or HIGH (70 VDC – 300 VDC; 80 VAC – 276 VAC), which should be chosen at placing the order.

Voltage inputs

Each voltage input is connected to measuring circuit through input resistor chain (4.2 M Ω per phase). Maximum value of input voltage is 600 V_{L-N} (1000 V_{L-L}).

Current inputs

Each current input is connected to measuring circuit through current transformer (0.01Ω) per phase). Maximum allowed thermal value of input current is 15A (cont.).

2.4 Purpose and use of different types of measuring transducers

Multifunction transducer MT540 / UMT540

The instrument is used for monitoring and measuring electric quantities of three-phase electrical power distribution system. The meter is provided with 32 program adjustable alarms, up to four input or output modules and communication. With the RS232/RS485, Ethernet or USB communication, the meter can be set and measurements can be checked. The meter also functions as an energy counter, with the additional function of cost management by tariffs. A tariff input or a tariff clock can be set. At tariff clock setting, four seasons and four day groups as well as energy cost for each period and a day group (16 different cost periods) are available. Additionally, the instrument can store up to 20 holidays. As an energy counter it can record energy in four tariffs in all four quadrants of the load power diagram.

Network recorder MT550 / UMT550

The instrument is used for monitoring, measuring and recording measurements of electric quantities of electrical power distribution system. The (U)MT550 measure all parameters like (U)MT540 and up to 32 measurements and up to 32 alarms could be recorded in the internal memory. The memory is separated into two sections for measurements (A and B) and one section for recording alarms. The memory division is defined by the user via communication.

Network analyzer MT560 / UMT560

The instrument measure all parameters like (U)MT550 and is used also for permanent analysis of electricity supply quality in compliance with the SIST EN 50160 standard. A partition in the internal memory is reserved for storing reports for a period of the last seven years. The internal memory capacity enables storing of more than 170,000 variations of the measurements from the standard values, which enables finding eventual reasons for the problems in network. Limits and required quality in a monitored period can be defined for each monitored characteristic. The following characteristics are measured and recorded:

- Frequency variations
- Voltage variations
- Voltage unbalances
- Voltage dips
- Voltage interruptions
- Rapid voltage changes
- Flickers Pst & Plt
- Temporary overvoltages
- THD's
- Harmonics

Remote display RD500

Remote display is very useful for a quick look-up to all measured parameters or to set up the (U)MT5xx measuring transducers without the PC. A graphical display with the resolution of 128x64 enables graphical representation of signals and parameters. With five select buttons it is possible to browse through the user-friendly menu.

2.5 Type differences

Different types differ on functionality and equipment as shown in the following table.

Differences in hardware

Feature		MT540 UMT540	MT550 UMT550	MT560 UMT560	RD500
Internal fla	sh memory	×	8Mb	8Mb	×
Real time of	clock (RTC) with battery	•	•	•	×
	ation interface RS485 / Ethernet / USB	•/0/0	•/o/o	•/o/o	RS485
I/O 1	AO/AI/AL/COM2/PO/PI/TI/DO/DI	o/o/o/×/o/o/o/o/o	o/o/o/×/o/o/o/o/o	o/o/o/×/o/o/o/o/o	×
I/O 2	AO/AI/AL/COM2/PO/PI/TI/DO/DI	o/o/o/×/o/o/o/o/o	o/o/o/×/o/o/o/o/o	o/o/o/×/o/o/o/o/o	×
I/O 3	AO/AI/AL/COM2/PO/PI/TI/DO/DI	o/o/o/×/o/o/×/o/o	o/o/o/×/o/o/×/o/o	0/0/0/×/0/0/×/0/0	×
I/O 4	AO/AI/AL/COM2/PO/PI/TI/DO/DI	o/o/o/o/o/o/×/o/o	o/o/o/o/o/o/×/o/o	o/o/o/o/o/o/×/o/o	×
Automatic	voltage / current range	●/●	●/●	●/●	×/×
Universal p	power supply LO / HI	0/0	0/0	0/0	×
Universal p	power supply	×	×	×	•
Graphical 1	LCD display	×	×	×	•
LED indica	ator: Power/Comm./Alarm	●/●/×	●/●/×	●/●/×	×/•/•
Control ke	ys on front panel (5)	×	×	×	•

^{• –} serial \circ – option \times – not supported

AO-analogue out, AI-analogue in, AL-alarm/digital out, PO-pulse out, PI-pulse in, TI-tariff in, DO-digital out, DI-digital in, COM2-additional communication port

Software functions

	Functions	MT540 UMT540	MT550 UMT550	MT560 UMT560	RD500
	MODBUS and DNP3 protocols	•	•	•	×
	Tariff clock	•	•	•	×
	MD calculation (TF, FW, SW)	●/●/●	●/●/●	●/●/●	×/×/×
	Programmable alarms (32)	•	•	•	×
Basic	Alarms recording	×	•	•	×
Ва	Measurements recording	×	•	•	×
	Measurements graphs (time/FFT)	●/●*	●/●*	●/●	×/×
	Evaluation of voltage quality in compliance with EN 50160	×	×	•	×
	Setup wizard	×	×	×	•
te	Wrong connection warning	×	×	×	•
Remote	Custom screens (3)	×	×	×	•
Re	Demonstration screen cycling	×	×	×	•
	Programmable refresh time	×	×	×	•

^{• −} serial × − not supported

^{* (}U)MT540 & (U)MT550 support harmonic analysis up to 31st harmonic, (U)MT560 up to 63rd

Supported measurements

	Basic measurements	MT540	MT550	MT560
		UMT540	UMT550	UMT560
	Voltage U_1 , U_2 , U_3 and U^{\sim}	•	•	•
	Current I ₁ , I ₂ , I ₃ , I _n , I _t and I _a	•	•	•
	Active power P_1 , P_2 , P_3 , and P_t	•	•	•
	Reactive power Q ₁ , Q ₂ , Q ₃ , and Q _t	•	•	•
Phase	Apparent power S_1 , S_2 , S_3 , and S_t	•	•	•
Ph	Power factor PF ₁ , PF ₂ , PF ₃ and PF [~]	•	•	•
	Power angle φ_1 , φ_2 , φ_3 and φ^{\sim}	•	•	•
	THD of phase voltage U _{f1} , U _{f2} and			
	U_{f3}	•	•	•
	THD of power angle I_1 , I_2 and I_3	•	•	•
ase	Phase-to-phase voltage U ₁₂ , U ₂₃ , U ₃₁	•	•	•
Phase-to-phase	Average phase-to-phase voltage $U_{\rm ff}$	•	•	•
÷	Phase-to-phase angle φ_{12} , φ_{23} , φ_{31}	•	•	•
ase	Voltage unbalance U _u	•	•	•
Ьh	THD of phase-to-phase voltage	•	•	•
	Counter 1	•	•	•
	Counter 2	•	•	•
_	Counter 3	•	•	•
rgy	Counter 4	•	•	•
Energy	Total	•	•	•
_	Active tariff	•	•	•
	Cost by counters	•	•	•
	Total cost	•	•	•

• – serial

 \times – not supported

	Other measurements	MT540 UMT540	MT550 UMT550	MT560 UMT560
	Voltage U ₁ , U ₂ , U ₃	•	•	•
	Phase-to-phase voltage U ₁₂ , U ₂₃ , U ₃₁	•	•	•
/ Max	Phase current I ₁ , I ₂ , I ₃	•	•	•
\ \ \	Active power P ₁ , P ₂ , P ₃ , P	•	•	•
Min	Apparent power S ₁ , S ₂ , S ₃ , S	•	•	•
	Frequency f	•	•	•
	Internal temperature	•	•	•
	Phase current I ₁ , I ₂ , I ₃	•	•	•
es	Active power P (Positive)	•	•	•
values	Active power P (Negative)	•	•	•
	Reactive power Q – L	•	•	•
MD	Reactive power Q – C	•	•	•
	Apparent power S	•	•	•

• – serial

× – not supported

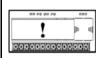
	Other measurements	MT540 UMT540	MT550 UMT550	MT560 UMT560
	Frequency	•	•	•
	Internal temperature	•	•	•
	Date & Time	•	•	•
Measurement	Time graphs $(I_1, I_2, I_3, U_1, U_2, U_3, U_{12}, U_{23})$ and U_{31}	•	•	•
	FFT graphs $(I_1, I_2, I_3, U_1, U_2, U_3, U_{12}, U_{23})$ and U_{31}	•	•	•
lea	Phase voltage harmonics	•*	•*	•
>	Phase-to-phase voltage harmonics	•*	•*	•
	Current harmonics	•*	•*	•
	Analysis in compliance with SIST EN 50160	×	×	•

^{• –} serial \times – not supported

^{* (}U)MT540 & (U)MT550 support harmonic analysis up to 31st harmonic, (U)MT560 up to 63rd

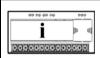
3. CONNECTION

3.1 Introduction	14
3.2 Mounting	14
3.3 Electric connection •••	14
3.4 Connection of input/output modules •••	16
3.5 Communication connection $\bullet \bullet \bullet \bullet$	17
3.6 Connection of auxiliary power supply	20
3.7 Remote display connection	20


3.1 Introduction

This chapter deals with the instructions for measuring transducer and remote display connection. Both the use and connection of the device includes handling with dangerous currents and voltages. Only a qualified person shall therefore perform connection. Iskra MIS does not take any responsibility regarding the use and connection. If any doubt occurs regarding connection and use in the system, which device is intended for, please contact a person who is responsible for such installations.

Before use: Check voltages and phase rotation, supply voltage and nominal frequency.


Check protective fuse rating (the recommended maximum rating of the external protective fuse for this equipment is 6A - Red Spot type or equivalent).

Warning!

Wrong or incomplete connection of voltage, protective ground or other terminals can cause malfunction or damage the device.

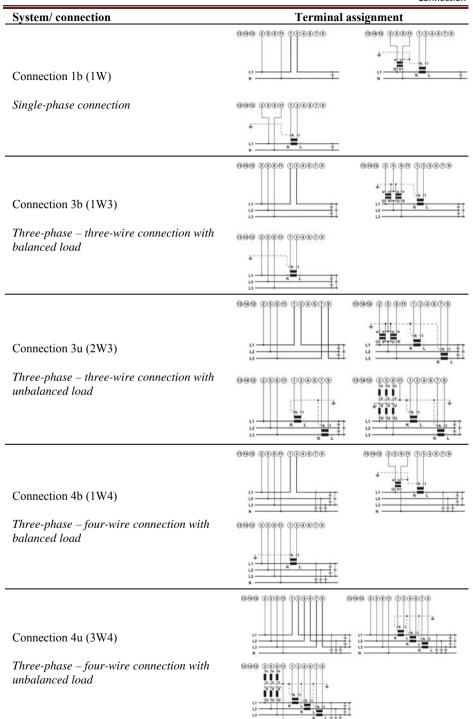
Note

After connection, settings have to be performed via communication or remote display (connection mode, current and voltage transformers ratio ...).

3.2 Mounting

UMT5xx measuring transducer is designed for DIN rail mounting. It should be mounted on a 35 mm DIN rail by means of three plastic fasteners. Before installation fasteners should be in open position (pulled). After device is on place, fasteners are locked (pushed) to close position.

RD500 remote display is designed for panel mounting. Before inserting the device into the panel cut-out, removes four nuts and flat washers, insert it and position the nuts and flat washers. Fix device to the panel. Recommended panel cut out is 4 inches (10.16 cm).


3.3 Electric connection

Voltage inputs of measuring transducer can be connected directly to low-voltage network or via appropriate voltage measuring transformer to medium or high voltage network.

Current inputs of measuring transducer can be connected directly to low-voltage network or via a corresponding current transformer.

Choose corresponding connection from the figures below and connect corresponding voltages and currents. Information on electrical characteristics is given in chapter Inputs on page 66.

3.4 Connection of input/output modules

Warning!

Check the module features that are specified on the label, before connecting module contacts. Wrong connection can cause damage or destruction of module and/or device.

Note

Frequency of the tariff input voltage signal should not essentially deviate from the frequency of the measuring input signal. At no signal on the measuring inputs the tariff triggering is not reliable.

Connect module contacts as specified on the label. Examples of labels are given below and describe modules built in the device. Information on electrical properties of modules is given in chapter Modules on page 67.

1/O 1 Tariff input 110 V AC	Tariff input module for changeover between up to four tariffs. (Example of tariff module as I/O module 1)
I/O 1 Relay output 48 V DC/AC +√- 15 1000 mA -√- 16	Alarm (relay) module. (Example of alarm module as I/O module 1)
1/O 1 Pulse output 40 V DC/AC	Pulse output (solid state) module for energy counters. (Example of pulse module as I/O module 1)
I/O 1 Analogue output 0/+20 mA	Analogue output module with analogue output, proportional to measured quantities. The outputs may be either short or open-circuited. They are electrically insulated from each other and from all other circuits. (Example of analogue output module as I/O module 1)
I/O 1 Digital input 48 V DC/AC	Digital input module enables reception of digital signal. (Example of 48V digital module as I/O module 1)
I/O 4 COM 2 RS485 B → 21 A → 22	2nd communication module, for connection of RS485 communication (COM2). Only on I/O4!
I/O 1 Pulse input 548 V DC	Pulse input module enables reception of pulses from various counters (water, gas, heat, flow). (Example of pulse input module as I/O module 1)
I/O 1 Analogue input 0/+10 V	Analoge input module enables measurements of DC U, I, R or temp. (PT100, PT1000) values from external sources.

I/O	1	
Watchdog ou	tput	
48 V DC/AC	-√+	15
1000 mA	_/~`℃	16

Watchdog output (relay) module enables proper instrument operation supervision

3.5 Communication connection

(U)MT5xx has a wide variety of communication possibilities to suit specific demands. It is equipped with one standard (COM1) and one optional communication port (COM2). In the case of simultaneous use of Ethernet and USB communication, the standard port (COM1) is shared by two communication channels: COM1A (Ethernet) and COM1B (USB). This allows different users to access data from (U)MT5xx simultaneously and by using Ethernet communication, data can be accessed worldwide. Additional (COM2) port is available (optional), when two independent serial communications are required. (U)MT5xx can be connected to the same network using COM1 or COM2 (if available).

Different configurations are possible (to be specified with an order):

Configuration	COM1A	COM1B	COM2 ⁽²⁾
1	RS232/485 ⁽³⁾	/	/
2	RS232/485 ⁽³⁾	/	RS485
3	USB	/	/
4	USB	/	RS485
5 ⁽¹⁾	Ethernet	USB	/
6 ⁽¹⁾	Ethernet	USB	RS485

(1) Galvanic separation between COM1A and COM1B is 1 kVAC

(2) COM2 (RS485 only) uses connection terminals of I/O4 module in case of secondary communication or RJ11 connector in case of remote display communication

(3) RS485 communication is available through DB9 or screw-in terminals, while RS232 is available only through DB9

Warning!

When connecting a DB9 communication connector it is necessary to assure that only RS232 or RS485 communication is used. Terminals of a DB9 connector that are not necessary for the used communication should remain unconnected, otherwise the communication module and/or device can be damaged or destroyed. See connection diagrams below.

Connect a communication line by means of a corresponding terminal. Corresponding data are stated on the instrument label, regarding the selected communication. Connector terminals are marked on the label on the upper side of the instrument. More detailed information on communication is given in chapter Communication on page 68.

COMMUNICATION Terminal: 23 A RS485 25 B DB9 - FEMALE	9 5 6 1	DB9 connector for RS232 and RS485 communication
R\$232 R\$485 Tx Rx ↓ B A 2 3 5 7 8		RJ45 Ethernet connector
Ethernet MAC No.: USB 2.0 Type B		USB-B type connector

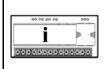
RS232

RS232 communication is intended for direct connection of the measuring transducer to the personal computer. It is necessary to assure the corresponding connection of individual terminals of the DB9 connector (see a table on the next page).

RS485

RS485 communication is intended for connection of devices to network where several instruments with RS485 communication are connected to a common communication interface. We recommend the use of Iskra MIS communication interfaces for best compatibility!

Correct connection of individual terminals of the DB9 connector shall be provided (see a table on the next page).


Ethernet

Ethernet communication allows for integration of the device into global Ethernet-based networks. The device supports fast Ethernet (10/100 Mbps). For proper operation, standard IEEE 802.3 compliant 100BASE-T CAT5 Ethernet cable is recommended. The device is supplied with a unique MAC address for identification. The MAC address is printed on the label, positioned on the upper side of the instrument.

USB

USB communication serves as a fast peer-to-terminal data link. The instrument is detected by host as a USB 2.0 compatible device. The USB connection is provided through a USB standard Type B connector.

Note

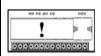
When (U)MT5xx is connected to a PC through USB communication for the first time, a user is prompted to install a driver. The driver is provided on the CD, enclosed in the original shipment package, or can be downloaded from the Iskra MIS web page www.iskra-mis.si. With this driver installed, USB is redirected to a serial port, which should be selected when using MiQen software.

Survey of communication connection

	Connector	Terminals	Position	Data direction	Description				
			1	Not connected	_				
		5 ⊥	2	From	Data transmission (Tx)				
		3 Rx	3	То	Data reception (Rx)				
		$\frac{3 \text{ K}^{\text{A}}}{2 \text{ Tx}}$	4	Not connected	_				
RS232	DB9		5	_	Grounding (♣)				
			6	Not connected	_				
			7	_	Do not connect!				
			8		Do not connect!				
			9	Not connected	I				
			1	Not connected	ı				
		8 A	2	_	Do not connect!				
		7 B	3	-	Do not connect!				
	DB9		4	Not connected	-				
			5		Do not connect!				
RS485			6	Not connected	ı				
K3483			7	To/From	В				
			8	To/From	A				
			9	Not connected	ı				
	SCREW	25 B 24 C 24 C	23	To/From	A				
	-IN		24	Not connected	C				
	-111		25	To/From	В				
Ethern et	RJ-45		100BASE-T CAT5 cable recommended						
USB	USB-B		Standard USB 2.0 compatible cable recommended (Type B plug)						

Survey of secondary communication connections

Bui vey or	survey of secondary communication connections									
	Connector	Terminals	Positi on	Data direction	Description					
RS485	SCREW	22 B 21 A	21	To/From	A					
COM2	-IN		22	To/From	В					
			1	I	Grounding (♣)					
RS485		<u>6 GND</u> /5 GND	2	I	Vcc					
10703	D I_11	4 B 3 A 12 VCC	3	To/From	A					
Remote			4	To/From	В					
display		T GND	5	ı	Grounding (♣)					
			6	_	Grounding (♣)					


3.6 Connection of auxiliary power supply

Measuring transducer has universal (AC/DC) auxiliary power supply. Information on electric consumption is given in chapter Technical data on page 64. Auxiliary supply is connected through three screw-in connectors. It can be either LOW (19 VDC - 70 VDC; 48 VAC - 77 VAC) or HIGH (70 VDC - 300 VDC; 80 VAC - 276 VAC), which should be chosen at placing the order.

INPUTS Current: SA Voltage: 500V Frequency: 50, 60Hz Connect.: 40 SUPPLY 2070 V DC 4877 V; 4070 Hz 13 */L Terminal: 14 1-N 12 ©	Connection of universal power supply (LOW) to terminals 13, 14 and 12
INPUTS Current: 5A Voltage: 500V Frequency: 50, 60Hz Connect. 4u SUPPLY 70300 V DC 80276 V ; d70 Hz 131 */L Terminal: 131 */L 12	Connection of universal power supply (HIGH) to terminals 13, 14 and 12

Warning!

For safety purposes it is important that all three wires (Line, Neutral and Protective Earth) are firmly connected. They should be connected only to the designated terminals as shown on the label above as well as on the front foil

3.7 Remote display connection

RD500 remote display has a wide range universal (AC/DC) auxiliary power supply (20 VDC - 300 VDC; 48 VAC - 276 VAC 40 - 70 Hz). Information on electric consumption is given in chapter Technical data on page 64.

For a proper connection of serial RS485 (DB9 connector) communication see Survey of communication connection table on page 19 and Survey of secondary communication connections on page 19. More detailed information on remote display is given in chapter Remote display features on page 58.

For a quick access to a single MT5xx transducer, RD500 communication cable should be plugged to a dedicated connector (RJ11 type) under the transparent cover. In case of a RS485 bus connection where RD500 is intended for supervision and reading of several (up to 32) MT5xx transducers, RD500 should be connected to the same bus as MT5xx transducers by means of screw-in connection.

Connection of universal power supply to terminals 13, 14 and connection of RS485 communication (DB9) at the rear side of RD500

4. SETTINGS

4.1 Introduction	
4.2 MiQen software	23
4.3 Setting procedure	25
4.4 General settings •••	25
Description and Location PC.	25
Average interval PC.	25
Currency PC 🚳	
Temperature unit PC 💌	25
Date format PC	
Date and time PC	
Auto Summer/Winter time PC	25
Maximum demand calculation (MD mode) PC	26
Resetting Min/Max PC 🚳	
Starting current for PF and PA (mA) PC	28
Starting current for all powers (mA) FC	28
Minimum synchronization voltage FC	28
Calculation of harmonics PC	28
Calculation of harmonics PC Reactive power and energy calculation PC	28
4.5 Connection •••	29
Connection PC 💇	
Setting of current and voltage ratios PC	29
Used voltage and current range PC	29
Nominal frequency PC	29
Wrong connection warning PC	29
Energy flow direction PC	29
CT connection PC	29
4.6 Communication •••	29
Serial Communication (COM1) PC	29
USB Communication PC 💌	30
Ethernet communication PC 💌	30
4.7 Security •••	
Password setting PC 🖎	31
4.8 Energy •••	32
Active tariff © Common energy exponent ©	32
Common energy exponent PC	32
Counter divider PC	32
Common exponent of energy cost PC Common exponent of tariff price and energy price in tariffs PC	32
Common exponent of tariff price and energy price in tariffs PC	33
Tariff clock PC	33
4.9 Inputs and outputs _●●●	35
Analogue output module PC	
Analogue input module PC 壓	36
Alarm/Digital output module 🖭 壓	36
2 nd Communication module (COM2) PC	
Pulse output module PC 壓	
Tariff input module PC	37
Digital input module PC	37
Pulse input module PC	38
Watchdog output module PC	• •

4.10 Alarms	<i>38</i>
Alarms setting	38
4.11 Memory O • •	39
Memory division PC	39
Recoders A and B setting PC	
4.12 Conformity of voltage with SIST EN 50160 standard OO●	40
Quality of power supply PC	
Voltage variations PC	42
Interruptions and dips PC	42
Rapid voltage changes PC	
Temporary overvoltages, flickers PC	42
Harmonics and THD PC	
4.13 Reset operations (• • • • • • • • • • • • • • • • • •	42
Reset Min / Max values PC	42
Reset energy counters (E1, E2, E3, E4) PC	42
Reset energy counters costs (E1, E2, E3, E4) PC	
Reset maximal MD values FC .	
Reset the last MD period PC	
MD synchronization 🖭 🔤	42
Reset alarm output PC	43

4.1 Introduction

Instrument settings can be remotely modified with communication (COM1 and/or COM2 if available) and MiQen software, when connected to a PC, or with the use of the keyboard on the Remote display. When using Remote display, modified settings are applied only after confirmation (OK).

4.2 MiQen software

MiQen is a software tool for complete monitoring of measuring instruments, connected to a PC via serial or TCP/IP communication. A user-friendly interface consists of five segments: devices management, instrument settings, real-time measurements, data analysis and software upgrading.

Two editions of MiOen software are available:

- Professional edition with full functionality and supports all software functionality. CD-Key is required for the installation.
- Standard edition, freeware edition which supports all software functionality except data analysis.

Devices management

Select the instrument in a favorite's line. Use the network explorer to set and explore the devices network. Communication parameters of all devices and their addresses in network can be easily set.

Instrument settings

Multi Register Edit technology assures a simple modification of settings that are organized in a tree structure. Besides transferring settings into the instrument, storing and reading from the setting files are also available.

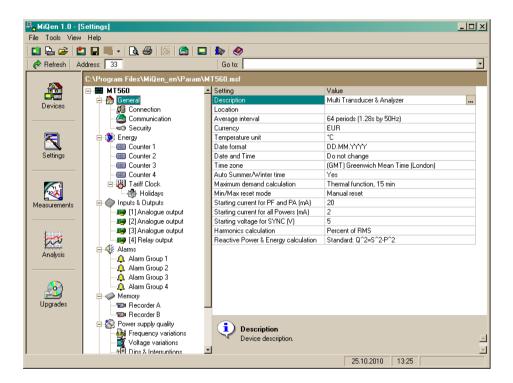
Real-time measurements

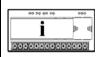
All supported measurements can be captured in real time in a table form. Harmonics and their time-reconstructed signals are displayed also graphically. For further processing of the results of measurements, copying via a clipboard into standard Windows formats is supported.

Data analysis

Analysis can be performed for the instruments with a built-in memory. Recorded quantities can be monitored in a tabular or a graphical form. The events that triggered alarms can be analyzed or a report on supply voltage quality can be made. All data can be exported to an Access data base, Excel worksheets or as a text file.

Software upgrading


Always use the latest version of software, both MiQen and software in the instrument. The program automatically informs you on available upgrades that can be transferred from the web site and used for upgrading.


Note

More information about MiQen software can be found in MiQen Help system!

PC MiQen user interface

You can download freeware MiQen (standard edition) from: www.iskramis.si

4.3 Setting procedure

In order to modify instrument settings with MiQen, current parameters must be loaded first. Instrument settings can be acquired via a communication link (serial or TCP/IP) or can be loaded off-line from a file on a local disk. Settings are displayed in the MiQen Setting Window - the left part displays a hierarchical tree structure of settings, the right part displays parameter values of the chosen setting group.

Note

Supported settings and functions depend on the type of device. For a survey of supported measurements and functions see chapter Type differences, pages 10 to 12.

4.4 General settings

General settings are essential for measuring transducer. They are divided into four additional sublevels (Connection, Communication, Display and Security).

Description and Location PC

Two parameters that are intended for easier recognition of a certain unit. They are especially used for identification of the device or location on which measurements are performed.

Average interval PC

The averaging interval defines the refresh rate of measurements on communication and remote display.

Currency 🕫 🐼

Choose currency for evaluating energy cost (see chapter Energy on page 32). A currency designation consists of up to four letters taken from the English or Russian alphabet and numbers and symbols stated in table below.

English	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
English	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0	р	q	r	S	t	u	V	W	X	У	Z
Symbols		!		#	\$	%	&		()	*	+	,	-		/	0	to	9		,	<	=	>	?	a
Duggion	Α	Б	В	Γ	Д	Е	Ж	3	И	Й	К	Л	M	Н	О	П	P	С	T	У	Φ	X	Ц	Ч	П	П
Russian	a	б	В	Γ	Д	e	Ж	3	И	й	К	Л	M	Н	0	П	р	С	Т	У	ф	X	Ц	Ч	Ш	Ш

Temperature unit 🖭 🔕

Choose a unit for temperature display.

Date format 🖭 🔕

Set a date format.

Date and time PC

Set date and time of the meter. Setting is important for correct memory operation, maximal values (MD), etc.

Auto Summer/Winter time 🖭 🐼

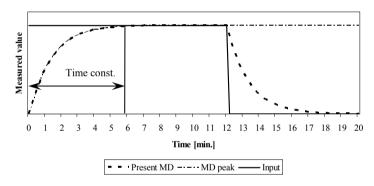
If Yes is chosen, time will be automatically shifted to a winter or a summer time, regarding the time that is momentarily set.

Maximum demand calculation (MD mode) 🕫 👁

The instrument provides maximum demand values from a variety of average demand values:

- Thermal function
- Fixed window
- Sliding windows (up to 15)

Thermal function


A thermal function assures exponent thermal characteristic based on simulation of bimetal meters. Maximal values and time of their occurrence are stored in device. A time constant (t. c.) can be set from 1 to 255 minutes and is 6 - time thermal time constant (t. c. = 6 * thermal time constant).

Example:

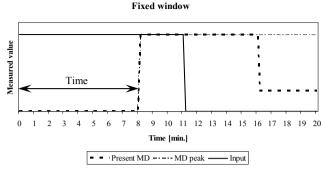
Mode: Thermal function Time constant: 8 min.

Current MD and maximal MD: Reset at 0 min.

Thermal function

Fixed window

A fixed window is a mode that calculates average value over a fixed time period. This (t. c. – time constant) can be set from 1 to 255 min.


»TIME IN A PERIOD« will actively show the remaining time until the end of the period, until a current MD and maximal MD from the last reset are calculated. When displays for Pt(+/-), Qt(L/C), St, I1, I2 and I3 are updated, a new period and measurement of new average values are started. »TIME IN A PERIOD« then shows 0 of X min.

A new period also starts after a longer interruption of power supply (more than 1 s). If time constant is set to one of the values of 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 or 60 minutes, »TIME IN A PERIOD« is set to such value that one of the following intervals will be terminated at a full hour. In other cases of time constants, »TIME IN A PERIOD« is set to 0.

Example:

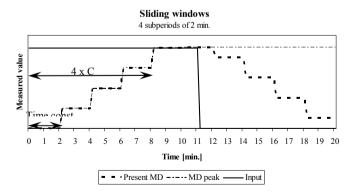
Mode: Fixed window Time constant: 8 min.

Current MD and maximal MD: Reset at 0 min.

Sliding windows

A mode of sliding windows enables multiple calculation of average in a period and thus more frequent regeneration of measuring results. Average value over a complete period is displayed. A current MD is updated every sub period for average of previous sub periods.

A number of sub periods can be set from 2 to 15.


A time period (t. c.) can be set from 1 to 255 minutes.

A new period also starts after a longer interruption of power supply (more than 1 s). If time constant is set to one of the values of 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 or 60 minutes, »TIME IN A PERIOD« is set to such value that one of the following intervals will be terminated at a full hour. In other cases of time constants, »TIME IN A PERIOD« is set to 0.

Example:

Mode: Sliding windows Time constant: 2 min. No. of sub periods: 4

Current MD and maximal MD: Reset at 0 min.

A complete period lasts for 8 minutes and consists of 4 sub periods that are 2 minutes long. A current MD and a maximal MD are reset at 0 min. "TIME IN A PERIOD" is data for a sub period so that the values for a current MD and a maximal MD are regenerated every two minutes. After 4 sub periods (1 complete period) the oldest sub period is eliminated when a new one is added, so that average (a window) always covers the last 4 sub periods.

Resetting Min/Max 🕫 🐼

A mode of stored values deletion of Min/Max values is set. It can be set to a manual (see chapter Reset on page 42) or automatic mode (daily, weekly, monthly or yearly reset). Resets are performed at the beginning of a certain term at midnight. Daily – every day, weekly on Monday at 00:00, monthly – the first day in a month at 00:00, and yearly – the first day in a year 1.1. at 00:00.

Starting current for PF and PA (mA) E

At all measuring inputs noise is usually present. It is constant and its influence on the accuracy is increased by decreasing measuring signals. It is present also when measuring signals are not connected and it occurs at all further calculations as very sporadic measurements. By setting a common starting current, a limit of input signal is defined where measurements and all other calculations are still performed.

Starting current for all powers (mA) PC

Noise is limited with a starting current also at measurements and calculations of powers.

Minimum synchronization voltage PC

If all phase voltages are smaller than this (noise limit) setting, instrument uses current inputs for synchronization. If also all phase currents are smaller than *Starrting current for PF and PA* setting, synchronization is not possible and frequency displayed is 0.

Calculation of harmonics PC

Selection of reference for calculation is important for calculation of absolute values of harmonics. It is possible to select between a percentage of harmonic of RMS signal value (current, voltage) or relative to the fundamental (first harmonic). At percentage of RMS, a signal rate is calculated for all harmonics. At percentage of 1st harmonic, all other harmonics are calculated relatively to 1st harmonic.

Reactive power and energy calculation PC

Two different principles of reactive power and energy calculation are used:

Standard method:

With this method a reactive power and energy are calculated based on assumption that all power (energy), that is not active is reactive.

$$O^2 = S^2 - P^2$$

This means also that all higher harmonics will be measured as reactive power (energy).

Delayed current method:

With this method, reactive power (energy) is calculated by multiplication of voltage samples and delayed current samples (see chapter Equations on page 87):

$$O = \Pi \times I|_{+00^{\circ}}$$

With this method, reactive power (energy) represents only true reactive component of apparent power (energy).

4.5 Connection

Note

Settings of connections shall reflect actual state otherwise measurements are not valid.

Connection 🖭 🐷

When connection is selected, load connection and the supported measurements are defined (see chapter Survey of supported measurements regarding connection mode on page 45).

Setting of current and voltage ratios 🖭 👁

Before setting current and voltage ratios it is necessary to be familiar with the conditions in which device will be used. All other measurements and calculations depend on these settings. Up to five decimal places can be set. To set decimal point and prefix on remote display position the cursor (left /right) to last (empty) place or the decimal point.

Settings range	VT primary	VT secondary	CT primary	CT secondary
Maximal value	1638,3 kV	13383 V	1638,3 kA	13383 A
Minimal value	0,1 V	1 mV	0,1 A	1 mA

Used voltage and current range PC

Setting of the range is connected with all settings of alarms, analogue outputs and a display (calculation) of energy and measurements recording, where 100% represents 500 V 5A. In case of subsequent change of the range, alarms settings shall be correspondingly changed, as well.

Nominal frequency PC

A valid frequency measurement is within the range of nominal frequency ± 32 Hz. This setting is used for alarms and recorders only.

Wrong connection warning PC

If all phase currents (active powers) do not have same sign (some are positive and some negative) and/or if phase voltages and phase currents are mixed, the warning will be activated if this setting is set to YES. This warning is seen only on remote display. See chapter 7.

Energy flow direction PC

This setting allows manual change of energy flow direction (IMPORT to EXPORT or vice versa) in readings tab. It has no influence on readings sent to communication or to memory.

CT connection PC

If this setting is set to REVERSED it has the same influence as if CT's would be reversely connected. All power readings will also change its sign.

4.6 Communication

Serial Communication (COM1) 📴 👁

<u>Define parameters</u> (only for COM1) that are important for the operation in RS485 network or connections with PC via RS232 communication. Factory settings of communication are #33\115200,n,8,2 (address 1 to 247\rate 2400 to 115200 b/s, parity, data bits, stop bit).

<u>Data type</u> (XML-smart, XML-logic): With this setting a required data format for sending data to receiver using PUSH communication mode is set. For more information about PUSH communication mode and XML data format see chapter 6 on page 55 and appendix D on page 91.

Response time: With this setting a maximum waiting time for acknowledgement of sent data in PUSH communication mode is set.

<u>Time synchronization</u>: Which type of communication is used for synchronization of time for PUSH communication mode purpose.

USB Communication PC

For description of all settings see *Serial Communication (COM1)*.

Ethernet communication PC

<u>Device Address</u>: Each device should have its unique address number when connected to the network. Usable range of addresses is from 1 to 247. Default address number is 33.

<u>IP address:</u> Communication interface should have a unique IP address in the Ethernet network. Two modes for assigning IP are possible:

Fixed IP address: In most installations a fixed IP address is required. A system provider usually defines IP addresses. An IP address should be within a valid IP range, unique for your network and in the same subnetwork as your PC.

DHCP: Automatic (dynamic) method of assigning IP addressed (DHCP) is used in most networks. If you are not sure if DHPC is used in your network, check it at your system provider.

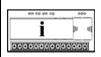
<u>Local Port:</u> The physical connector on a device enabling the connection to be made. Use a non reserved port number from 1025 to 65535. If using Redirector software, the port number should be between 14000 and 14009

Port numbers	Function					
1 – 1024, 9999, 30718, 33333	Reserved numbers					
14000 – 14009	Reserved for Redirector					

Factory settings of Ethernet communication are:

IP Address	DHCP (automatically)
TCP Port	10001
Subnet Mask	255.255.255.0

<u>Sending data: When PUSH</u> communication mode is used, data can be send (pushed) to two different servers. Within this setting, all parameters relevant to used servers should be set, as well as data type for sent data, time synchronization source and server response time. For more information about PUSH communication mode and XML data format see chapter 6 on page 55 and appendix D on page 91.


4.7 Security

Settings parameters are divided into four groups regarding security level:

- 1 At the first level (PL1), settings of a real time clock can be changed, and energy meters and MD can be reset.
- At the second level (PL2), the access to all data that are protected with the first level (PL1) and setting of all other parameters in the »SETTINGS« menu are available.
- A backup password (BP) is used if passwords at levels 1 (PL1) and 2 (PL2) have been forgotten, and it is different for each device (depending on a serial number of the meter). The BP password is available in the user support department in ISKRA MIS, and is entered instead of the password PL1 or/and PL2. Do not forget to state the meter serial meter when contacting the personnel in Iskra MIS.

Note

A serial number of device is stated on the label and also accessible with MiQen software.

Password setting PC

A password consists of four letters taken from the British alphabet from A to Z. When setting a password, only the letter being set is visible while the others are covered with *.

Two passwords (PL1, PL2) and the time of automatic activation could be set.

Passwords are the same regardless of communication port (COM1 or COM2) by which the user is accessing restricted settings. But unlocking the access with COM1 doesn't unlock the access with COM2 and vice versa.

Password modification 🖭 👁

A password can be modified; however, only that password can be modified to which the access is unlocked at the moment.

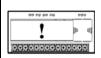
Password disabling 🖭 👁

A password is disabled by setting the "AAAA" password.

Note

A factory set password is "AAAA" at both access levels (L1 and L2). This password does not limit access.

Password and language


Language change is possible without password input. When language is changed from or to Russian, character transformation has to be taken in to account. Character transformation table (English or Russian alphabet) is stated below.

English																										
Russian	Α	Б	В	Γ	Д	Е	Ж	3	И	Й	К	Л	M	Н	О	П	P	C	Τ	У	Φ	X	Ц	Ч	Ш	Щ

4.8 Energy

Warning!

After modification of energy parameters, the energy meters must be reset otherwise all further energy measurements could be incorrect.

Active tariff 🖭 👁

When active tariff is set, one of the tariffs is defined as active; switching between tariffs is done either with a tariff clock or a tariff input. For the operation of the tariff clock other parameters of the tariff clock that are accessible only via communication must be set correctly.

Common energy exponent PC

Common energy exponent defines minimal energy that can be displayed on the energy counter. On the basis of this and a counter divider, a basic calculation prefix for energy is defined (-3 is 10^{-3} Wh = mWh, 4 is 10^{4} Wh = 10 kWh). A common energy exponent also influences in setting a number of impulses for energy of pulse output or alarm output functioning as an energy meter.

Define common energy exponent as recommended in table below, where counter divider is at default value 10. Values of primary voltage and current determine proper Common energy exponent.

Current	1 A	5 A	50 A	100 A	1000 A
110 V	-1	0	1	1	2
230 V	0	0	1	2	3
1000 V	0	1	2	3	4
30 kV	2	2	3	4	4*

^{* -} Counter divider should be at least 100

Counter divider PC

The counter divider additionally defines precision of a certain counter, according to settings of common energy exponent.

Common exponent of energy cost PC

Setting enables resolving the cost display. On the basis of this and a diving constant, a basic calculation prefix for energy cost is defined.

Common exponent of tariff price and energy price in tariffs PC

Exponent and price represent energy price (active, reactive, common) in a tariff. The price exponent is used for recording the price without decimal places. For example, to set a price for tariff 1 to $0.1567 \in k$ Wh, the number in Price for energy in tariff 1 field should be 1567 and common tariff price exponent should be $-4 (1567 \times 1E-4 = 0.1567)$

An example for 12.345kWh of consumed active energy in the first tariff (price 0,1567 €/kWh):

Common energy exponent	0	2	2
Counter divider	1	1	100
Common energy cost exponent	-3	-2	0
Common tariff price exponent	-4	-4	-4
Price for energy in tariff 1	1567	1567	1567
Unit	EUR	EUR	EUR
Example of result, displayed	12.345 kWh 1,934 EUR	12.3 kWh 1.93 EUR	0.01 MWh 1 EUR

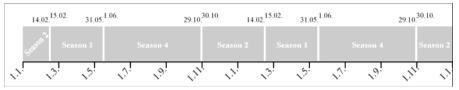
Tariff clock 🖭

Basic characteristics of a program tariff clock:

- 4 tariffs (T1 to T4)
- Up to 4 time spots in each Day program for tariff switching
- Whichever combination of valid days in a week or holidays for each program
- Combining of day groups (use of over 4 time spots for certain days in a week)
- Separate settings for 4 seasons a year
- Up to 20 settable dates for holidays

Day program sets up to 4 time spots (rules) for each day group in a season for tariff switching.

A date of real time clock defines an active period. An individual period is active from the period starting date to the first next date of the beginning of other periods.


The order of seasons and starting dates is not important, except when two dates are equal. In that case the season with a higher successive number has priority, while the season with a lower number will never be active.

If no starting date of a season is active, the active period is 1.

If the present date is before the first starting date of any period, the period is active with the last starting date.

Example of settings:

Season	Season start day
Season 1:	15.02
Season 2:	30.10
Season 3:	_
Season 4:	01.06
Date	Active season
01.01 14.02.	2 (last in the year)
15.02 31.05.	1
01.06 29.10.	4
30.10. – 31.12.	2

Days in a week and selected dates for holidays define time spots for each daily group in a period for tariff switching. Dates for holidays have priority over days in a week.

When the real time clock date is equal to one of a date of holidays, tariff is switched to holiday, within a period of active daily group with a selected holiday.

If there is no date of holidays that is equal to the real time clock date, all daily groups with the selected current day in a week are active.

Several daily groups can be active simultaneously, which enables more than 4 time spots in one day (combine of day programs). If the time spot is not set for a certain day, tariff T1 is chosen.

Time of a real time clock defines an active tariff regarding currently active day program. A selected tariff T1 to T4 of individual time spot is active from the time of the time spot to the first next time of the remaining time spots.

The order of time spots is not important, except when two times are equal. In that case the time with a higher successive number has priority (if several time spots are active, times of higher time spots have higher successive numbers), while the time spot with a lower number will never be active.

If current time is before the first time of any time spot of active spots, the time spot with the last time is chosen.

If no time spot of active programs is valid, tariff T1 is chosen.

Time selected tariff T1 to T4 or fixed selected tariff (via communication) defines activity of an energy counter.

4.9 Inputs and outputs

Module settings depend on built-in modules.

Analogue output module PC

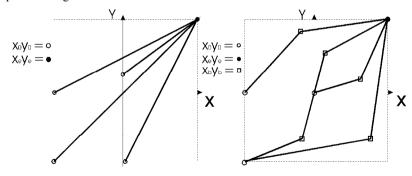
Each of up to four analogue outputs is fully programmable and can be set to any of 6 ranges.

Output parameter

Set the measured parameter to be transformed onto the analogue output.

Output range

Defines analogue output full-scale ranges:


DC current output	DC voltage output
-101 mA	-101 V
-505 mA	
-10010 mA	-10010 V
-20020 mA	

Output range

Defines the shape and up to 5 break points of an analogue output. For intrinsic-error for analogue outputs with bent or linear zoom characteristic multiply accuracy class with correction factor (c). Correction factor c (the highest value applies):

Linear characteristic	Bent characteristic
$1 - \frac{y_0}{}$	$x_{b-1} \le x \le x_b$ b – number of break points (1 to 5)
$c = \frac{y_e}{1 - \frac{x_0}{x_0}} or c = 1$	$c = \frac{y_b - y_{b-1}}{x_b - x_{b-1}} \cdot \frac{x_e}{y_e} or c = 1$

Example of settings with linear and bent characteristic:

--- Limit of the output range

Average interval for analogue output

Defines the average interval for measurements on the analogue output. Available settings are from 1 period (0.02 sec by 50Hz) up to 128 periods (2.56 sec by 50Hz).

Analogue input module 🖭 👁

Three types of analogue inputs are suitable for acquisition of low voltage DC signals from different sensors. According to application requirements it is possible to choose current, voltage or resistance (temperature) analogue input. They all use the same output terminals. MiQen software allows setting an appropriate calculation factor, exponent and required unit for representation of primary measured value (temperature, pressure, flux...)

DC current range:

Range setting allows bipolar ± 20 mA or ± 2 mA max. input value

DC voltage range:

Range setting allows bipolar $\pm 10 \text{ V}$ or $\pm 1 \text{ V}$ max. input value

Resistance / temperature range:

Range setting allows 2000Ω or $200~\Omega$ max. input value

It is also possible to choose temperature sensor (PT100 or PT1000) with direct translation into temperature (-200°C to +850°C). Since only two-wire connection is possible it is recommended that wire resistance is also set, when long leads are used.

Alarm/Digital output module 🖭 👁

Alarm groups that are connected with an alarm module and a signal shape are defined.

An alarm module can also function as a pulse output with limited pulse length (min. 10 ms) or general purpose digital output. Other parameters are defined in the same way as at a pulse module. A parallel RC filter with time constant of at least 250 μ s (R·C \geq 250 μ s) should be used in case of a sensitive pulse counter. RC filter attenuates relay transient signals.

Signal shape:

- Normal A relay is closed until condition for the alarm is fulfilled.
- Normal inverse A relay is open until condition for the alarm is fulfilled.
- Holds A relay is closed when condition for the alarm is fulfilled, and remains closed until it is reset via communication.
- Pulse an impulse of the set length is sent always when condition for the alarm is fulfilled
- Always switched on / off (permanent) A relay is permanently switched on or off irrespective of the condition for the alarm.

User information

Digital output functionality

Permanent alarm setting enables remote control via communication.

2nd Communication module (COM2) PC

Module is preset for RS485 communication on I/O 4 terminals.

Module settings define parameters that are important for the operation in RS485 network. Factory settings of communication are #33\115200,n,8,2 (address 1 to 247\rate 2400 to 115200 b/s, parity, data bits, stop bit). By default, addresses of COM1 and COM2 are the same (#33). In this case, change of COM1 address sets COM2 to the same address. When COM1 and COM2 addresses are not equal, change of COM1 address has no influence on COM2 address. Change of COM2 address has no influence on COM1 address. (U)MT5xx can be connected to the same network using COM1 or COM2 (if available).

Pulse output module 🖭 🐼

A corresponding energy counter can be assigned to a pulse output. A number of pulses per energy unit, pulse length, and a tariff in which output is active are set.

Warning!

Pulse parameters are defined by SIST EN 62053–31 standard. In chapter Calculation of recommended pulse parameters, below a simplified rule is described to assist you in setting the pulse output parameters.

The pulse module can also function as an alarm output with limited current load (max. 20 mA).

Calculation of recommended pulse parameters

Number of pulses per energy unit should be in certain limits according to expected power. If not so the measurement from pulse output can be incorrect. Settings of current and voltage transformers can help in estimation of expected power.

Principle described below for pulse setting, where e is prefix, satisfies SIST EN 62053–31: 2001 standards pulse specifications:

$$1,5...15 \text{ eW} \rightarrow 100 \text{ p/1 eWh}$$

Examples:

Expected power	\rightarrow	Pulse output settings
150 – 1500 kW	\rightarrow	1 p/1kWh
1,5 – 15 MW	\rightarrow	100 p/1MWh
15 – 150 MW	\rightarrow	10 p/1MWh
150 – 1500 MW	\rightarrow	1 p/1MWh

Tariff input module PC

No setting. It operates by setting active tariff at a tariff input (see chapter *Tariff clock* on page 33). With the combination of 2 tariff inputs maximal 4 tariffs can be selected.

Digital input module 🖭

No setting. General purpose digital input can be used for various alarms function (unauthorized access notification, switch ON or OFF...).

Pulse input module PC

No setting. General purpose pulse counter from external meters (water, gas, heat...). Its value can be assigned to any of four energy counters. See chapter *Energy* on page 32.

Watchdog output module PC

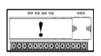
The purpose is to detect potential malfunction of transducer or auxiliary power supply failure. This module can be set for normal operation (relay in close position) or for test purposes to open position (manual activation). After test module should be set back to normal operation.

4.10 Alarms

Alarms are used for alarming exceeded set values of the measured quantities.

■ – (U)MT540 no supported alarms recording into memory

Alarms setting 📴


When PUSH communication mode is active, all alarms can be sent (pushed) to a predefined location inside local or wide area network. Settings allow choosing an appropriate destination for data to be sent, time interval of sent data and a delay time for sending data if they can not be sent immediately due to restrictions in network.

For more information about PUSH communication mode see chapter 6 on page 55.

Measuring transducer supports recording and storing of 32 alarms in 4 groups. For each group of alarms a time constant of maximal values in thermal mode, a delay time and alarm deactivation hysteresis can be defined.

Quantity, value (a current value or a MD – thermal function) and a condition for alarm switch-on are defined for every individual alarm.

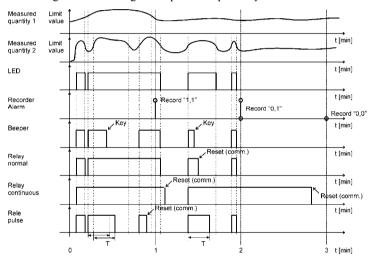
Warning!

New values of alarms are calculated in percentage at modification of connection settings.

000

Types of alarms

Visual alarm


Available ONLY with remote display! When alarm is switched on, a red LED on the remote display front side is blinking (see figure shown on next page).

Audible alarm

Available ONLY with remote display! When alarm is switched on, an audible alarm is given by the remote display (a beep). It can be switched off by pressing any key on the front plate (see figure shown on next page).

Alarm output (pulse)

According to the alarm signal shape the output relay will behave as shown in figure below.

4.11 Memory

Measurements, alarms, reports and details of supply voltage quality are stored in a built in memory in the (U)MT550 / (U)MT560 - 8MB flash. All records stored in memory are accessible via communication with MiQen software.

O – (U)MT540 no memory

Memory division PC

Memory is divided into 3 partitions which size is defined by the user. The A and B recorders are intended for recording measurements, while all alarms that occurred are recorded in an alarm partition. (U)MT560 has 2 additional partitions for recording reports and details on the quality of supply voltage (see chapter Quality of supply, next page). Each of those partitions can be enabled or disabled by the user.

Memory operation

Memory functions in a cyclic mode in compliance with the FIFO method. This means that only the latest records are stored in the memory that will replace the oldest ones. A number of stored data or a storing period depends on selected partition size, a number of recorded quantities and time of division sampling.

Memory clearing PC

There is usually no need to clear the memory, because it works in cyclic mode. If you want to clear memory data anyway, the data storing must be stopped first. Read the instrument settings with MiQen and set "Recorder state" in Memory setting group to stopped. Download changes to the device and open Memory info form and then click on Clear memory button. Select memory partitions to be cleared on Memory clearing form and click on OK button. Set "Recorder state" setting back to active.

Recoders A and B setting PC

Separately, for each of two recorders (A and B), settings can be set:

Sampling time sets a time interval for readings to be written to a recorder

Time constant for maximal value in thermal mode for values 1-8 and 9-16 sets a period for maximal value in thermal mode calculation.

When PUSH communication mode is active, all measurements which are set to be written to the memory (max. 32 in both recorders), can be sent (pushed) to a predefined location inside local or wide area network. Settings allow choosing an appropriate destination for data to be sent, time interval of sent data and a delay time for sending data if they can not be sent immediately due to restrictions in network.

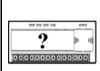
For more information about PUSH communication mode see chapter 6 on page 55.

For each of 16 measurements, which are to be recorded it is possible to set a required value and its representation (min., max.,avg...).

4.12 Conformity of voltage with SIST EN 50160 standard

000

The SIST EN 50160 standard deals with voltage characteristics of electricity supplied by public distribution systems. This specifies the limits or values within which a customer can expect voltage characteristics to lie. Within this definition the Network analyzer is adapted for supervising the compliance of distribution systems with the SIST EN 50160 standard.


● - Only (U)MT560 enables supervision of network compliance with the SIST EN 50160 standard

Based on requirements stated in the standard, default parameters are set in the meter according to which supervision of all required parameters is done. Parameters can also be changed in detailed setting of individual characteristic.

Quality of power supply PC

Basic parameters are defined that influence other settings.

User information

Un – Nominal supply voltage with which network is marked and to which individual operation parameters refer.

Uc – Agreed supply voltage is usually network voltage (Un). If a client and a supplier agree about voltage that is different from nominal voltage, that voltage is considered as agreed supply voltage.

Monitoring mode

It defines if the instrument performs measurements for network compliance with the standard.

Electric energetic system

Public distribution system and, if necessary, all default settings are selected.

Nominal supply voltage

A value that is usually equal to nominal network voltage is entered.

Nominal power frequency

Nominal frequency of supply voltage is selected.

Monitoring period

For a report of electric voltage quality, a monitoring period is defined. A number of monitored weeks are entered

Monitoring start day

A starting day in a week is selected. It starts at 00:00 (midnight). The selected day will be the first day in a report.

Voltage hysteresis

Hysteresis for voltage dips, interruptions and overvoltages is set in percentage from nominal voltage.

Sending reports and report details

When PUSH communication mode is active, reports about quality and report details for each parameter, can be sent (pushed) to a predefined location inside local or wide area network. Settings allow choosing an appropriate destination for data to be sent, time interval of sent data and a delay time for sending data if they can not be sent immediately due to restrictions in network.

For more information about PUSH communication mode see chapter 6 on page 55.

Frequency variations PC

All frequency measurements are performed in 10–second intervals of averaging. For both required quality variations a range of variation is defined in percentage. Percentage of required measurements within the limits (required quality) in the monitored period is also defined.

Voltage variations PC

All voltage measurements are performed in 10-minute intervals of averaging. For all required variations a range of deviation is defined in percentage. Percentage of required measurements (required quality) within the limits in the monitored period is also defined.

Interruptions and dips PC

A limit for voltage dip and interruption is defined in percentage with regard to nominal voltage. A limit between short-term and long-term interruption is defined in seconds. Other parameters define limits of events in a monitored period.

Rapid voltage changes PC

A change limit in percentage of nominal voltage and permitted number of events in a monitored period are defined.

Temporary overvoltages, flickers PC

There are two types of flickers: short-term flicker intensity (P_{st}) and long-term flicker intensity (P_{tt}). Required quality in a monitored period is defined for flickers. A number of allowed events in the period are defined for temporary overvoltages.

Harmonics and THD PC

Permitted limits for the first 25 harmonic components and required quality in a monitored period are defined.

4.13 Reset operations

100

- (U)MT540 does not support some measurements for reset (see chapter Type differences, pages 10 to 12)

Reset Min / Max values 🖭 🔕

All Min / Max values are reset.

Reset energy counters (E1, E2, E3, E4) PC

All or individual energy meters are reset.

Reset energy counters costs (E1, E2, E3, E4) PC

All or individual energy costs are reset.

Reset maximal MD values PC

Thermal mode

Current and stored MDs are reset

Fixed interval / Sliding windows

The values in the current time interval, in all sub-windows for sliding windows and stored MD are reset. In the same time, synchronization of time interval to the beginning of the first sub-window is also performed.

Reset the last MD period 🖭 🔕

Thermal mode

Current MD value is reset.

Fixed interval / Sliding windows

Values in the current time interval and in all sub-windows for sliding windows are reset. In the same time, synchronization of the time interval is also performed.

MD synchronization 📴 🐼

Thermal mode

In this mode, synchronization does not have any influence.

Fixed interval / Sliding windows

Synchronization sets time in a period or a sub-period for sliding windows to 0 (zero). If the interval is set to 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 or 60 minutes, time in a period is set to such value that some intervals will be terminated at completed hour.

Example:

Time constant (interval)	15 min	10 min	7 min
Synchronization start time	10:42	10:42	10:42
Time in a period	12 min	2 min	0 min
First final interval	10:45	10:50	10:49

Reset alarm output 🖭 🐼

All alarms are reset

5. MEASUREMENTS

5.1 Introduction	
5.2 Supported measurements	45
5.3 Available connections	
Survey of supported measurements regarding connection mode	45
5.4 Explanation of basic concepts	48
Sample factor – MV	48
Average interval – MP.	
Power and energy flow	49
5.5 Calculation and display of measurements	49
5.6 Present values 100	50
Voltage 🖭 🔯	50
Current PC 🐷	50
Active, reactive and apparent power FC	50
Power factor and power angle PC	50
Frequency PC 🐷	51
Energy PC 🔯	51
MD values PC	51
THD – Total harmonic distortion PC	51
Flickers PC 🐷	51
5.7 Min/Max values •••	51
Phase voltage PC 💌	51
Phase-to-phase voltage PC	51
Current FC 🐷	
Active power PC 💌	52
Apparent power PC	52
Frequency PC 🔯	52
Date and time of reset PC	52
5.8 Alarms •••	52
5.9 Power supply quality <i>OO</i> ●	52
Monitoring periods PC 🕮	
Actual monitoring period PC 🐼	52
Previous monitoring period PC	52
Monitoring parameters PC	
Reseting quality parameter reports PC	54

5.1 Introduction

In the following chapters the device operation is explained more in detail.

5.2 Supported measurements

Measurements support regarding the device type is described in chapter Type differences, pages 10 to 12. Selection of supported measurements of individual instrument type is changed with the connection settings. All supported measurements could be read via communication (MiQen) or displayed on Remote display.

5.3 Available connections

Different electric connections are described more in detail in chapter Electric connection on page 14. Connections are marked as follows:

- -Connection 1b (1W) Single phase connection
- -Connection 3b (1W3) Three-phase three-wire connection with balanced load
- -Connection 4b (1W4) Three-phase four-wire connection with balanced load
- -Connection 3u (2W3) Three-phase three-wire connection with unbalanced load
- -Connection 4u (3W4) Tree-phase four-wire connection with unbalanced load

Note

Measurements support depends on connection mode the instrument type. Calculated measurements are only informative.

Survey of supported measurements regarding connection mode

	Basic measurements	Designat.	Unit	1b	3b	3u	4b	4u
	Voltage U ₁	U1	V	•	×	×	•	•
	Voltage U ₂	U2	V	×	×	×	0	•
	Voltage U ₃	U3	V	×	×	×	0	•
	Average voltage U~	UA	V	×	×	×	0	•
	Current I ₁	I1	A	•	•	•	•	•
	Current I ₂	I2	A	×	0	•	0	•
	Current I ₃	I3	A	×	0	•	0	•
	Current I _n	Inc	A	×	0	0	0	•
Phase	Total current I _t	I	A	•	0	0	0	•
Ph	Average current I _a	Iavg	A	×	0	0	0	•
	Active power P ₁	P1	W	•	×	×	•	•
	Active power P ₂	P2	W	×	×	×	0	•
	Active power P ₃	Р3	W	×	×	×	0	•
	Total active power P _t	P	W	•	•	•	0	•
	Reactive power Q ₁	Q1	var	•	×	×	•	•
	Reactive power Q ₂	Q2	var	×	×	×	0	•
	Reactive power Q ₃	Q3	var	×	×	×	0	•
	Total reactive power Q _t	Q	var	•	•	•	0	•

supported

o - calculated

 \times – not supported

	Basic measurements	Designat.	Unit	1b	3b	3u	4b	4u
	Apparent power S ₁	S1	VA	•	×	×	•	•
	Apparent power S ₂	S2	VA	×	×	×	0	•
	Apparent power S ₃	S3	VA	×	×	×	0	•
	Total apparent power S _t	S	VA	•	•	•	0	•
	Power factor PF ₁	PF1/ePF1		•	×	×	•	•
	Power factor PF ₂	PF2/ePF2		×	×	×	0	•
1	Power factor PF ₃	PF3/ePF3		×	×	×	0	•
	Total power factor PF [~]	PF/ePF		•	•	•	0	•
se	Power angle φ_1	φ1	0	•	×	×	•	•
Phase	Power angle φ_2	φ2	0	×	×	×	0	•
F	Power angle φ_2	φ3	0	×	×	×	0	•
	Total power angle φ^{\sim}	φ	0	•	•	•	0	•
	THD of phase voltage U_{fl}	Ψ U1%	%THD	•	×	×	•	•
	THD of phase voltage U_{f2}	U2%	%THD	×	×	×	0	•
	THD of phase voltage U_{f3}	U3%	%THD	×	×	×	0	
	THD of phase current I_1	I1%	%THD					•
	THD of phase current I ₁ THD of phase current I ₂	I2%		×	•	•	•	•
			%THD		0	•	0	•
	THD of phase current I ₃	I3%	%THD	×	0	•	0	•
	Phase-to-phase voltage U ₁₂	U12	V	×	•	•	0	•
	Phase-to-phase voltage U ₂₃	U23	V	×	•	•	0	•
	Phase-to-phase voltage U ₃₁	U31	V	×	•	•	0	•
e.	Average phase-to-phase voltage (U _{ff})	U∆	V	×	•	•	0	•
has	Phase-to-phase angle φ ₁₂	φ12	0	×	×	×	0	•
Phase-to-phase	Phase-to-phase angle ϕ_{23}	φ23	٥	×	×	×	0	•
-to	Phase-to-phase angle ϕ_{31}	φ31	٥	×	X	×	0	•
ase	Voltage unbalance U_u	Uu	%	×	•	•	×	•
Ph	THD of phase-to-phase voltage THD _{U12}	U12%	%THD	×	•	•	0	•
	THD of phase-to-phase voltage THD _{U23}	U23%	%THD	×	•	•	0	•
1	THD of phase-to-phase voltage THD _{U31}	U31%	%THD	×	•	•	0	•
	F		Wh					
y	Counters 1–4 (phase 1, 2, 3, total)	E1, E2, E3, E4	VAh varh	•	•	•	•	•
erg	Active tariff	Atar	74111	•	•	•	•	•
Energy	Cost by meters	E1\$, E2\$, E3\$, E4\$	XXXX	•	•	•	•	•
	Total cost	E\$	XXXX	•	•	•	•	•
	MD current I ₁	I1	A	•	•	•	•	•
D	MD current I ₂	I2	A	×	0	•	0	•
M	MD current I ₃	I3	A	×	0	•	0	•
ıes	MD active power P (positive)	P+	W	•	•	•	•	•
/alı	MD active power P (negative)	P-	W	•	•	•	•	•
X. V	MD reactive power I (negative)	Q≱	var	÷	•	•	•	•
Max. values M	MD reactive power Q-C	Q 5 Q †	var	•	•	•	•	
V	MD apparent power S	S	VA	•	•			-
		alculated	VΛ		L	not a	inport	od.

ullet - supported \circ - calculated \times - not supported

	Flicker measurement	Designat.	Unit	1b	3b	3u	4b	4u
	Short term f. 1. phase voltage	Plt1		•	×	×	•	•
	Short term f. 2. phase voltage	Plt2		×	×	×	0	•
	Short term f. 3. phase voltage	Plt3		×	×	×	0	•
PIt	Short term f. 1. phase-to-phase voltage	Pst1		×	•	•	×	×
Pst /]	Short term f. 2. phase-to-phase voltage	Pst2		×	•	•	×	×
Ps	Short term f. 3. phase-to-phase voltage	Pst3		×	•	•	×	×
ers	Long term f. 1. phase voltage	Plt1		•	×	×	•	•
Flickers	Long term f. 2. phase voltage	Plt2		×	×	×	0	•
臣	Long term f. 3. phase voltage	Plt3		×	×	×	0	•
	Long term f. 1. phase-to-phase voltage	Pst1		×	•	•	×	×
	Long term f. 2. phase-to-phase voltage	Pst2		×	•	•	×	×
	Long term f. 3. phase-to-phase voltage	Pst3		×	•	•	×	×

	Min/max measurements	1b	3b	3u	4b	4u
	Voltage U ₁	•	×	×	•	•
	Voltage U ₂	×	×	×	0	•
ıes	Voltage U ₃	×	×	×	0	•
alı	Phase-to-phase voltage U ₁₂	×	•	•	0	•
<u>-</u>	Phase-to-phase voltage U ₂₃	×	•	•	0	•
Ĭ.	Phase-to-phase voltage U ₃₁	×	•	•	0	•
lin	Phase current I ₁	•	•	•	•	•
<u> </u>	Phase current I ₂	×	0	•	0	•
ıal	Phase current I ₃	×	0	•	0	•
Xin	Active power P ₁	•	×	×	•	•
ďα	Active power P ₂	×	×	×	0	•
	Active power P ₃	×	×	×	0	•
sno	Total active power P	×	•	•	0	•
ne	Apparent power S ₁	•	×	×	•	•
nta	Apparent power S ₂	×	×	×	0	•
Instantaneous / Maximal / Minimal values	Apparent power S ₃	×	×	×	0	•
In	Total apparent power S	×	•	•	0	•
	Frequency f	•	•	•	•	•
	Internal temperature	•	•	•	•	•

	Measurements of harmonics	1b	3b	3u	4b	4u
monics up to 63rd	Phase voltage U ₁	•	×	×	•	•
3r	Phase voltage U ₂	×	×	×	0	•
9 03	Phase voltage U ₃	×	×	×	0	•
	Phase-to-phase voltage U ₁₂	×	•	•	0	•
n sa	Phase-to-phase voltage U ₂₃	×	•	•	0	•
$ \begin{array}{ c c c c c c } \hline \textbf{P} & Phase \ voltage \ U_1 & \bullet & \times & \times \\ \hline Phase \ voltage \ U_2 & \times & \times & \times \\ \hline Phase \ voltage \ U_3 & \times & \times & \times \\ \hline Phase-to-phase \ voltage \ U_{12} & \times & \bullet & \bullet \\ \hline \end{array} $	•	0	•			
m.	Phase current I ₁	•	•	•	•	•
lar	Phase current I ₂	×	0	•	0	•
I	Phase current I ₃	×	0	•	0	•

• – supported

o – calculated

 \times – not supported

	Voltage quality measurements	1b	3b	3u	4b	4u
	Frequency variations 1 / 2	•	•	•	•	•
	Voltage variations 1 / 2	•	•	•	•	•
LS	Voltage unbalances	×	•	•	×	•
ete	Voltage dips	•	•	•	0	•
Quality parameters	Voltage interruptions	•	•	•	0	•
ar	Long interruptions	×	•	•	0	•
уp	Rapid voltage changes	×	•	•	0	•
alit	Flickers Pst / Plt	×	•	•	0	•
Onio	Temporary overvoltages	•	•	•	•	•
	THD's	×	0	•	0	•
	Harmonics	×	0	•	0	•

– supported

o – calculated

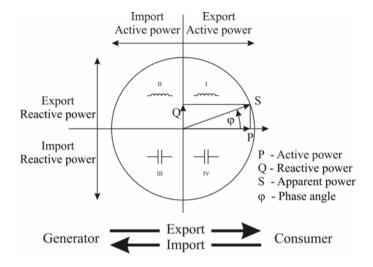
 \times – not supported

For 3b and 3u connection mode, only phase to phase voltages are measured. Because of that factor $\sqrt{3}$ is applied to calculation of quality considering nominal phase voltage.

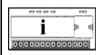
For 4u connection mode measurements support is same as for 1b.

5.4 Explanation of basic concepts

Sample factor - MV


A meter measures all primary quantities with sample frequency which can not exceed a certain number of samples in a time period. Based on these limitations (65Hz·128 samples) a sample factor is calculated. A sample factor (M_V), depending on frequency of a measured signal, defines a number of periods for a measurement calculation and thus a number of harmonics considered in calculations.

Average interval - MP


Due to readability of measurements from communication, an Average interval (M_P) is calculated with regard to the measured signal frequency. The Average interval (see chapter Average interval on page 25) defines refresh rate of displayed measurements based on a sampling factor.

Power and energy flow

Figures below show a flow of active power, reactive power and energy for 4u connection.

Note

Display of energy flow direction can be adjusted to connection and operation requirements by changing the *Energy flow direction* settings in general / connection (see page 29).

5.5 Calculation and display of measurements

This chapter deals with capture, calculation and display of all supported quantities of measurement. Only the most important equations are described; however, all of them are shown in chapter Equations on page 87 with additional descriptions and explanations.

 \P – (U)MT540 do not have all described measurements supported (see chapter Type differences on pages 10 to 12)

Note

Calculation and display of measurements depend on the device type and connection used. For more detailed information see chapters Survey of supported measurements regarding connection mode on page 45.

5.6 Present values

Voltage 🕫 🐼

Instrument measures real effective (rms) value of all phase voltages (U_1, U_2, U_3) , connected to the meter. Phase-to-phase voltages (U_{12}, U_{23}, U_{31}) , average phase voltage (U_f) and average phase-to-phase voltage (U_a) are calculated from measured phase voltages (U_1, U_2, U_3) . Voltage unbalance is calculated from phase-to-phase voltages (U_{12}, U_{23}, U_{31}) .

$$U_{\rm f} = \sqrt{\frac{\displaystyle\sum_{n=1}^{N} u_{\rm n}^2}{N}} \qquad \quad U_{\rm xy} = \sqrt{\frac{\displaystyle\sum_{n=1}^{N} \left(u_{\rm xn} - u_{\rm yn}\right)^2}{N}}$$

All voltage measurements are available via communication, standard and customized displays on remote display.

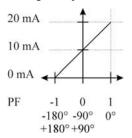
Current 🕫 🐼

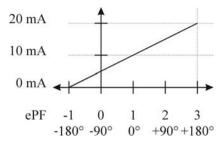
Instrument measures real effective (rms) value of phase currents, connected to current inputs. Neutral current (I_n), average current (I_a) and a sum of all phase currents (I_t) are calculated from phase currents.

$$_{I_{RMS}}=\sqrt{\frac{\sum\limits_{n=1}^{N}i_{n}^{2}}{N}}$$

All current measurements are available via communication, standard and customized displays on remote display.

Active, reactive and apparent power 🖭 👁


Active power is calculated from instantaneous phase voltages and currents. All measurements are seen via communication or are displayed on remote display. For more detailed information about calculation see chapter Equations on page 87.


Power factor and power angle 🖭 🗪

Power factor is calculated as quotient of active and apparent power for each phase separately $(\cos\phi_1,\,\cos\phi_2,\,\cos\phi_3)$ and total power angle $(\cos\phi_1)$. A symbol for a coil represents inductive load and a symbol for a capacitor represents capacitive load. For correct display of PF via analogue output and application of the alarm, ePF (extended power factor) is applied. It illustrates power factor with one value as described in the table below. For a display on the remote display both of them have equal display function: between -1 and -1 with the icon for inductive or capacitive load.

Load	С	\rightarrow		←	L
Angle [°]	-180	-90	0	+90	+180 (179.99)
PF	-1	0	1	0	-1
ePF	-1	0	1	2	3

Example of analogue output for PF and ePF:

Power angle represents angle between first voltage harmonic and first current harmonic for each individual phase. Total power angle is calculated from total active and reactive power (see equation for Total power angle, chapter Equations on page 87). A positive sign shows inductive load, and a negative sign shows capacitive load.

Frequency 🕫 🐼

Network frequency is calculated from time periods of measured voltage. Additionally frequency with 10–second averaging interval is calculated.

Energy 🕫 🐷

Three groups of energy measurements are available: by individual counters, by tariffs for each counter separately and energy cost by counters.

MD values 🕫 🐼

Measurements of MD values and time of recording (time stamp).

THD – Total harmonic distortion 🖭 🐼

THD is calculated for phase currents, phase and phase—to—phase voltages and is expressed as percent of high harmonic components regarding RMS value or relative to first harmonic (see chapter Calculation of harmonics on page 28).

Instrument uses measuring technique of real effective (rms) value that assures exact measurements with the presence of high harmonics up to 63rd harmonic.

Flickers 🕫 🐷

Measurements of current Short term and Long term flickers for phase or phase-to-phase voltage (depending on mode of connection). Until the flicker value is calculated the symbol – is displayed.

5.7 Min/Max values

Phase voltage 🕫 🐼

Measurements of phase voltages $U_{1},\,U_{2}$ and $U_{3}.$

Phase-to-phase voltage 🖭 🐼

Measurements of phase-to-phase voltages U_{12} , U_{23} and U_{13} .

Current 🖭 👁

Measurements of currents I_1 , I_2 and I_3 .

Active power 🖭 🐼

Measurements of active power P₁, P₂, P₂ and P_t.

Apparent power 🖭 🚳

Measurements of apparent power S₁, S₂, S₂ and S_t.

Frequency 🖭 👁

Measurements of current frequency (f) and frequency with 10-second averaging

Date and time of reset PC

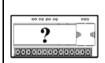
Last reset of Min/Max values date and time.

5.8 Alarms

5.8 Alarms

Four groups of 8 alarms with alarm conditions are measured.

5.9 Power supply quality


For evaluation of voltage quality, the (U)MT560 can store main characteristics in the internal memory. The reports are made on the basis of stored data. Data of the last 7 years and up to 170,000 variations of the measured quantities from the standard values are stored in the report, which enables detection of eventual reasons for troubles on network. The MiQen software offers a complete survey of reports with a detailed survey of individual measured quantities. Via the communication a survey of compliance of individual measured quantities in previous and actual monitored periods are also possible.

● - (U)MT560 enables supervision of voltage compliance with the SIST EN 50160 standard.

Monitoring periods 🖭 🐼

Instrument measures status, compliance and quality of individual parameters without details for actual and previous monitoring period. MiQen supports survey of actual and previous quality reports with all the details for past 7 years that have been registered. Compliance of voltage, status, start and end date, as well as exact monitoring time is register for each report. Displayed status for each report states if whole period was monitored.

User information

To make the complete quality report the aux. power supply for the device should not be interrupted during the whole period for which the report is requested. If firmware is updated or power supply is interrupted within a monitoring period, quality report is incomplete – Status: Not complete.

Actual monitoring period 🖭 👁

A survey of compliance of voltage quality by measured quantities in actual period.

Previous monitoring period 🖭 👁

A survey of compliance of voltage quality by measured quantities in previous period.

Monitoring parameters PC

Frequency variations 1 & 2

Average value is calculated in 10 second intervals and is according to nominal values compared with quality requirements. Frequency measurement is performed from first phase voltage (U_1) and is switched to the next if it is to low. At three phase connections the phase to phase voltages are calculated to phase voltages. If voltage signals are too low the measurement is performed from current signals. Depending on disturbance signals switch limit is between 1 and 4 V. Measurement performed from current signals requires at leas 30 mA current. Frequency accuracy is better than \pm 0.01 Hz.

Voltage variations 1 & 2

Average value of RMS phase voltage is calculated in 10 minute and is compared to allowed range of deviation. Start, stop and average voltage value (absolute and relative) for each phase is recorded in the internal memory. Voltage accuracy is better than \pm 0.2 % of nominal value for voltages of over 100 V.

Voltage unbalances

Average value is calculated in 10 minute intervals of periodical calculations via evasion stated in chapter Equations on page 87.

Voltage dips / Temporary overvoltages

Within a period RMS value is monitored and recorded in 1 second periods for both measurements. Phase to phase or phase voltages are monitored when three-wire or four-wire connection is used. Lowest dip and highest overvoltage are monitored for in each second interval respectively for each phase. In case of succession of several second events are detected one longer lasting event is recorded. All events are calculated in respect to fixed (nominal) voltage. In details of quality report start, stop and highest / lowest voltage value (absolute and relative) is recorded for each phase. Measuring uncertainty of monitored voltage is less than 1 % and uncertainty of event detection is 20 ms (1 period).

Voltage interruptions and Long interruptions

According to the upper limit of nominal supply voltage stated relatively interrupts are detected in 1 second periods for each phase. The interruption limit is set between 1 and 25 % of nominal voltage. Each second with at least one interrupt detected is recorded as an interrupt. Succession of several seconds with interrupts detected is recorded as one longer interrupt. After the interrupt ends, duration is compared to Short interrupt setting and is recorded as long or short interrupt in quality report. 2 % hysteresis is used for interrupts detection with 20 ms (2 periods) duration uncertainty.

Rapid voltage changes

RMS value of two subsequent samples is compared for each phase. For each phase in one second interval in which the limit is exceeded, an event is recorded. Measuring uncertainty of monitored voltage is less than 1%.

Flickers Pst / Plt

Intensity of a flicker is set by UIE—IEC measuring method and is evaluated as short-term or long-term flicker. Equations for calculating flickers are stated in chapter Equations on page 87. Intensity of a short term flicker is measured in 10 minute intervals and of informative nature.

Intensity of a long term flicker is based on 2 hour intervals of short term flicker and is recorded in respect to required quality in quality report.

THD's

Contribution of harmonics to the fundamental component is calculated from THD limit and nominal voltage. Average contribution of harmonic components is calculated in 10 minute intervals and compared to THD limit converted in to voltage value.

Harmonics

10 minute average is calculated for each harmonic in each phase and is compared to Harmonic limit. All harmonic components should be within the limit, or it will be recorded in quality report in internal memory.

Reseting quality parameter reports PC

Some quality parameter reports are made on a weekly basis and other on yearly basis. These parameters reset at the end of each observed period. Weekly based reports will reset every week. Even if instruments' location or mode of operation is altered, weekly report will reset at the end of the week. But yearly reports will not reset till the end of the year. Therefore when required, yearly reports have to reset manually.

In order to reset reports choose setting *Power supply quality / Monitoring mode* and change the value to "No monitoring". Download settings to instrument. Then choose the same setting in change the value back to "EN50160". Again download settings to instrument. Now all yearly reports (anomaly counters) are reset.

6. COMMUNICATION MODES

6.1 PULL communication mode	56
6.2 PUSH communication mode	56
Explanation	56
Protocol and data format	56
Data transmission	57
Supported quantities and settings	57

(U)MT5x0 series transducers in general support two different communication modes to suit all demands about connectivity and flexibility.

6.1 PULL communication mode

This is most commonly used communication mode. It services data-on-demand and is therefore suitable for direct connection of setting and / or supervising software to a single instrument or for a network connection of multiple instruments, which requires setting up an appropriate communication infrastructure.

Data is sent from instrument when it is asked by external software according to MODBUS RTU or MODBUS TCP protocol.

This type of communication is normally used for a real-time on-demand measurement collection for control purposes.

To set up PULL communication mode, only basic communication settings are required according to communication type (serial, USB, ETHERNET). See chapter *communication* on page 29.

6.2 PUSH communication mode

Explanation

When in this communication mode, instrument(s) (client) are sending values of predefined quantities in predefined time intervals to two independent servers (data collectors - master), who collect data into data base for further analysis.

This mode of communication is very useful for a periodic monitoring of readings in systems where real-time operation is not required, but on the other side, reliability for collecting data is essential (e.g. for billing purposes, post processing and issuing trend warnings).

Protocol and data format

Protocol used for data transmission is MODBUS or TCP/IP, depends on used communication network. Data uses XML format, which allows additional information about sent data. All sent readings are time-stamped for accurate reconstruction of received data (if communication is lost and data is sent afterwards). Therefore time synchronization of client and server is essential. For that purpose, server sends synchronization data (for setting see page 29) within every response to received data. For more information about used XML format see appendix D on page 91.

Data transmission

Every transmission from client's side (instrument) must be acknowledged from master's side (server) to verify successful data transmission. In case client fails to receive acknowledgment after predefined response time (for setting see page 29) it will retry to send it in next time interval. This repeating of sending data will last until master responses to sent data. After that, client will send all available data from the moment it lost response from the master.

It is possible for PULL and PUSH communication mode to be active at the same time. Since POLL is used in real-time applications it has priority over PUSH. If PUSH is sending data when request for POLL arrives, instrument pauses current transmission and services POLL. In a next time interval it will continue to send PUSH data

Supported quantities and settings

Sending data in PUSH communication mode is closely related with storing measurements in a recorder. Quantities, which will be sent to master are the same quantities that are set to be stored in a recorders (recorders A and B, alarms recorder and quality reports with details recorder).

- Step 1: In menu general/communication set proper PUSH communication settings (see page 29), where time synchronization source, response time, data format and receiving server's parameters are defined.
- Step 2: Define data (quantities) for transmission. Sources for data can be alarms, quantities defined to be written in recorders (A and B) or electric quality reports and its details.In each of those three groups setting menu the following must be defined:
 - Communication channel, which will be used for data transmission. It can be serial bus (COM1, COM2) if RS485 network is used or one of two TCP/IP connections.
 - Transmission period, which set how often data shall be sent to master. This can
 either at every new reading, or at predefined time intervals (hourly, daily, weekly).
 When one of those intervals is used all data recorded between two time intervals is
 sent.
 - Transmission delay sets a delay time according to regular transmission period. This
 is useful in RS485 networks to avoid simultaneous transmissions of multiple devices
 (data collisions). Transmission delay can be disabled, set to default value, which is
 unique for every device in RS485 network (MODBUS address in milliseconds) or
 user defined.

7. REMOTE DISPLAY FEATURES

7.1 Remote display	59
7.2 Remote display settings	59
General settings	
Communication	59
Display	59
7.3 Remote mode	60
Entering to remote mode	
Displaying device information's	60
Installation wizard	
Device settings	61
Device measurements	62
Exiting from remote mode / changing the target device	62

7.1 Remote display

Remote display start-up begins after electrical connection directly to a single (U)MT5xx (RJ11 jack under the transparent cover) or to the RS485 network with several (U)MT5xx measuring transducers. (U)MT5xx can be connected to the same network using COM1 or COM2 (if available). Navigation keys and LCD display enable remote application and remote display settings. By choosing different RD500 target communication addresses it is possible to track measurements and change settings for up to 32 (U)MT5xx measuring transducers.

7.2 Remote display settings

Settings of the remote display are divided into 3 sublevels: General settings, Communication and Display.

General settings

Language

Set language on the remote display. When language is changed from or to Russian, characters of the password are changed as well. Character transformation table (English or Russian alphabet) is stated below:

English	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
Russian	A	Б	В	Γ	Д	Е	Ж	3	И	Й	К	Л	M	Н	О	П	P	С	Т	У	Φ	X	Ц	Ч	Ш	Щ

igotimes Main menu \Rightarrow Settings \Rightarrow General \Rightarrow Language

Note

If a wrong language is set, a menu of languages is displayed by simultaneous pressing up and down keys.

Communication

Communication parameters are important for the operation in RS485 network.

 \bowtie Main menu \Rightarrow Settings \Rightarrow Communication \Rightarrow

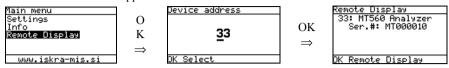
Device address

IMPORTANT! The address of the remote display itself must be different than the address of the measuring transducer. We recommend address number 247 for remote display address.

Bits per second, Parity, Stop bits

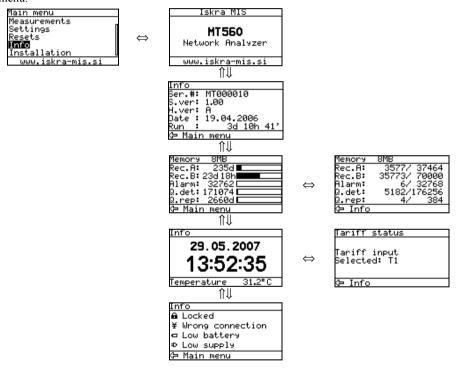
Those settings of the remote display must match settings of the measuring transducer. Default settings are: Bits per second = 115200 b/s, Parity = None, Stop bits = 2

Display

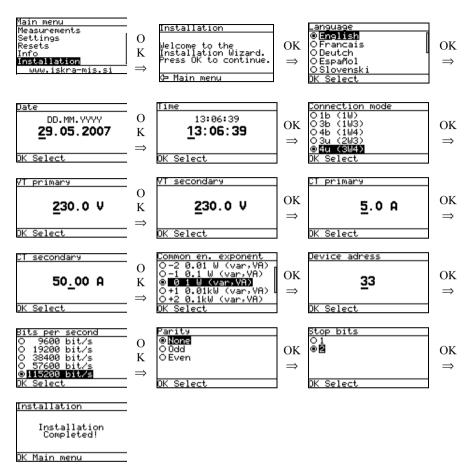

A combination of setting of the contrast and back light defines visibility and legibility of a display. Display settings shall be defined in compliance with the conditions in which it will be monitored. Economizing mode switches off back light according to the set time of inactivity.

Main menu ⇒ Settings ⇒ LCD ⇒ Contrast / Back light / Back light time off

7.3 Remote mode

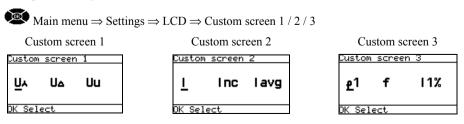

Entering to remote mode

Select Remote Display from Main menu and enter measuring transducer address. Device type and serial number should appear on next screen. Press OK button to enter in remote mode.


Displaying device information's

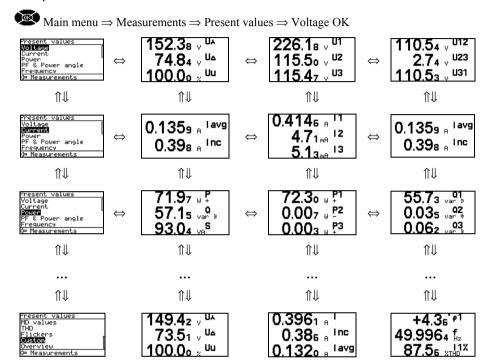
To display information's from remote device (measuring transducer) select Info from Main menu.

Installation wizard


After installation and electrical connection of measuring transducer, basic parameters have to be set in order to assure correct operation. The easiest way to achieve that is use the Installation wizard with Remote display. When entering the Installation menu, settings follow one another when the previous one is confirmed. All required parameters shall be entered and confirmed. Exit from the menu is possible when all required settings are confirmed or with interruption (key \Leftarrow several times) without changes.

Device settings

All settings of measuring transducer can be set via communication and MiQen software. Settings marked with in chapter "4. Settings" could be also set via Remote display keyboard. Setting done via Remote display keyboard comes in to function after confirmation (OK).


Example of setting custom screens:

Device measurements

For entry and quitting measurement display menu, the OK key is used. Direction keys (left / right / up / down) are used for passing between displays as show in example below.

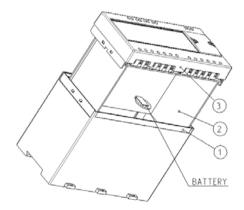
Example for MT560 at 4u connection mode:

Exiting from remote mode / changing the target device

To exit from remote mode simultaneously press up and down keys. Return to Remote display Main menu by pressing left key twice.

After that begin the procedure for entering to remote mode (as described above) and enter the address of required device.

8. BATTERY REPLACEMENT


The Measuring transducer contains a lithium battery. It is used to preserve data (date and time) in the device memory when if the power supply is off. Life time of battery is app.6 years (typical). High temperature and humidity shortens the battery's functionality. Battery has no effect on other functionality of the device, except date and time.

If remote display is connected to the measuring transducer then when the battery is expired and the power supply was interrupted, flashing battery indicator appears in the up-right corner of the remote display.

It is recommended that the instrument is sent back in the factory for battery replacement. Although it is possible that replacement is made by the qualified person, but in this case Iskra MIS does not take on responsibility for any injuries, dysfunction of the instrument or mechanical damage.

Instructions for replacement

- 1 Disconnect the instrument from measuring grid and power supply (read the safety section) and take it out of the mounting rail.
- 2 With flat screwdriver remove the cover [3] from instrument [1] (see picture 7.1)
- 3 Pull out printed circuit board (PCB) assembly [2]
- 4 Remove the battery from its holder on the PCB and replace it with the same model (Varta, type 6032 CR2032 SLF)

Picture 8.1

5 To put the instrument together replay steps from 2 to 3 in inverse order.

Warning!

You should set device date and time again after replacing the battery.

9. TECHNICAL DATA

9.1 Accuracy	65
9.2 Inputs	66
Voltage input	
Current input	66
Frequency	66
Power supply	66
9.3 Connection	66
Permitted conductor cross-sections	66
9.4 I/O modules	67
Alarm/Digital output module	67
Pulse input module	67
Pulse output module	67
Tariff input module	67
Digital input module	
2 nd Comm. module RS485	67
Analogue output	67
General	67
Analogue input	
9.5 Communication	
9.6 Electronic features	69
Response time	69
Battery	69
Memory	69
Status LED's	
9.7 Safety features	70
Protection	70
Ambient conditions	70
Enclosure	
9.8 Remote display	71
Electronic features	71
LED's	71
Communication	71
Power supply	71
Safety features	
9.9 Dimensions	72
Measuring transducers	
Remote display	72

9.1 Accuracy

Total accuracy (measurements and analogue output) according to IEC/EN 60 688 is presented as percentage of reading of the measurement except when it is stated as an absolute value.

Measured values	Ra	nge	Accuracy class*		
Rms current (I ₁ , I ₂ , I ₃ , Iavg, I _n)	5	A	0.2 (0.05)**		
Maximum current	12.	5 A	0.2 (0.05)**		
Rms phase voltage (U ₁ , U ₂ , U ₃ , Uavg)	500	V _{L-N}	0.2 (0.05)**		
Maximum voltage	600	V _{L-N}	0.2 (0.05)**		
Rms phase-to-phase voltage (U ₁₂ , U ₂₃ , U ₃₁ , Uavg)		V _{L-L}	0.2 (0.05)**		
Frequency (f) – actual	50 / (60Hz	0.02		
Frequency (10 s average)	50 / 6	60 Hz	0.02		
Nominal frequency range	164	00 Hz	0.02		
Power angle (φ)	-180	0180°	0.1°		
Power factor (PF)	I = 2 %.	0+1 120 % U _n 20 % I _n 200 % I _n	0.5 0.1		
Maximal values (MD)	75 120 250 500 [W/var/VA] I _n = 1 A	375 600 1250 2500 [W/var/VA] I _n = 5 A	1.0		
THD		00 V 00 %	0.5		
Active power	75 120	375 600	0.2 (0.1)**		
Reactive power	250 500	1250 2500	0.5 (0.2)**		
Apparent power	$[W/var/VA]$ $I_n = 1 A$	$[W/var/VA]$ $I_n = 5 A$	0.5 (0.2)**		
Active energy			Class 1 (Option 0.5S)		
Reactive energy			Class 2		
Real time clock (RTC)	-	-	1 min/month		
Analogue output (internal supply)	02	0 mA	± 20 μA		

Note

 \ast – All measurements are calculated with high harmonic signals. For voltage up to 65 Hz or less, harmonics up to 63rd are measured.

** - Accuracy on communication

9.2 Inputs

_	I	
Voltage input		
	Rated voltage (U _N)	57.7500 V _{L-N} , 100866 V _{L-L}
	Max. allowed value	$1.2 \times U_N$ permanently, $2 \times U_N$ 10s
	Minimal measurement	2 V sinusoidal
	Maximal measurement	600 V _{L-N} , 1000 V _{L-L}
	Input impedance	$4.2M\Omega$ per phase
	Consumption	$< U^2 / 4.2M\Omega$ per phase
<u> </u>		
Current input	Rated current (I _N)	0,315 A
	Max. allowed value	15 A continuous
	(thermal)	$20 \times I_N $ (5 × 1s)
	Min. measurement	Settings from starting current for all
		powers*
	Max. measurement	12,5 A sinusoidal
	Consumption	$<$ I ² \times 0.01 Ω per phase
Frequency		
rrequency	Rated frequency (f _N)	50, 60 Hz
	Measuring range	16400 Hz
	Maximum range	10 Hz1 kHz
Power supply		
Universal HIGH	AC Rated voltage	80 276 V
emversur men	AC Rated frequency	40 70 Hz
	DC Rated voltage	70 300 V
	Consumption	< 8VA
	Power-on transient	< 20 A; 1 ms
	current	
Universal LOW	AC Rated voltage	48 77 V
	AC Rated frequency	40 70 Hz
	DC Rated voltage	19 70 V
	Consumption	< 8VA
	Power-on transient	< 20 A; 1 ms
	current	

^{*} Starting current is set by setting software MiQen/settings/general

9.3 Connection

Permitted conductor cross-sections

Terminals	Max. cor	iductor cross-sectio	ons DIN / ANSI housing			
	DIN housing		ANSI housing			
Voltage inputs (4)	2,5 mm ²	with pin terminal	12 AWG			
		solid wire	with ring or spade terminals			
Current inputs (6)		with pin terminal	12 AWG			
	4 mm ²	solid wire	with ring or spade terminals			
Supply (3)		with pin terminal	12 AWG			
	4 mm^2	solid wire	with ring or spade terminals			
Modules (2 x 4)	2,5 mm ²	with pin terminal	14 AWG with pin terminal			
	4 mm ²	solid wire	12 AWG solid wire			

9.4 I/O modules

Alarm/Watchdog /Digital output module	Type Rated voltage Max. switching current Contact resistance Impulse Signal shape Normal Impulse Permanent	Relay switch 48 V AC/DC (+40% max) 1000 mA ≤ 100 mΩ (100 mA, 24V) Max. 4000 imp/hour Min. length 100 ms Until the condition is fulfilled Start at any new condition Since condition
Pulse input module	Rated voltage Max. current Min. pulse width Min. pulse periode SET voltage RESET voltage	5 - 48 V DC (± 20%) 8 mA (at 48 VDC + 20%) 0.5 ms 2 ms 40120 % of rated voltage 010 % of rated voltage
Pulse output module	Type Max. voltage Max. current Pulse length	Solid state 40 V AC/DC 30 mA ($R_{ONmax} = 8\Omega$) programmable 1999 ms
Tariff input module	Rated voltage Max. current Frequency range SET voltage RESET voltage	230 or 110 V _{AC} ± 20 % < 0.6 mA 4565 Hz 40120 % of rated voltage 010 % of rated voltage
Digital input module	Rated voltage Max. current Min. signal width Min. pause width SET voltage RESET voltage	48 V AC/DC (+ 40% max) < 1.5 mA 20 ms 40 ms 40120 % of rated voltage 010 % of rated voltage
2 nd Comm. module RS485	See 8.6 Communication RS Screw terminals only	3485
Analogue output General	Linearization No. of break points Output value limits Response time	Linear, Quadratic 5 ± 120% of nominal output Input → output < 100 ms

	Residual ripple	< 0.5 % p.p.					
DC Current output	Output range values -101 mA -505 mA -10010 mA -20020 mA Other ranges Burden voltage External resistance	-1000100% Range 1 Range 2 Range 3 Range 4 possible by MiQen software 10 V RB _{max} =10 V / I _{outN}					
DC Voltage output	Output range values -101 V -10010 V Other ranges Burden current External resistance	-1000100% Range 5 Range 6 possible by MiQen software 5 mA RB _{min} = U _{outN} / 5 mA					
Analogue input							
DC current input	Nominal input range 1 Nominal input range 2 input resistance accuracy temperature drift conversion resolution Analogue input mode	-20020 mA (±20%) -202 mA (±20%) 20 Ω 0.5 % of range 0.1% / °C (for range 2 only) 16 bit (sigma-delta) internally referenced Single-ended					
DC voltage input	Nominal input range1 Nominal input range 2 input resistance accuracy temperature drift conversion resolution Analogue input mode	$-10010 \text{ V } (\pm 20\%) \\ -101 \text{ V } (\pm 20\%) \\ 100 \text{ k}\Omega \\ 0.5 \% \text{ of range} \\ 0.1\% / ^{\circ}\text{C (for range 2 only)} \\ 16 \text{ bit (sigma-delta)} \\ \text{internally referenced Single-ended}$					
Resistance/ temperature input	Nominal input range (low)* Nominal input range (high)* connection accuracy conversion resolution Analogue input mode * Low or high input range a	0 - 200 Ω (max. 400 Ω) PT100 (-200°C–850°C) 0 - 2 k Ω (max. 4 k Ω) PT1000 (-200°C–850°C) 2-wire 0.5 % of range 16 bit (sigma-delta) internally referenced Single-ended					
	* Low or high input range and primary input value (resistance or temperature) are set by the MiQen setting software						

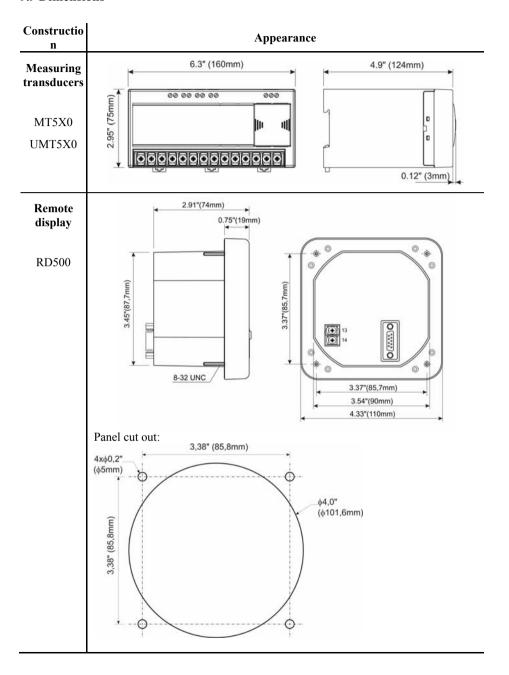
9.5 Communication

Type	Ethernet	RS232 ⁽¹⁾	RS485 ⁽¹⁾⁽²⁾	USB
Type of connection	Network	Direct	Network	Direct
Max. connection length	ı	3 m	1000 m	-
Number of bus stations	-	_	≤ 32	-
Terminals	RJ-45	DB9 ⁽¹⁾ / Scre	w terminals ⁽¹⁾	USB-B
Insulation		Protection class I,	3.3 kV _{ACRMS} 1 min	ļ.
Transfer mode		Asynchronous		
Protocol	MODBUS TCP / DNP3 (auto detect)	MODBUS RTU / DNP3 (auto detect)		
Transfer rate	10/100Mb/s auto detect	2.400 to 11	5.200 bit/s	USB 2.0

⁽¹⁾ Both types of comm. are available but only one at a time

9.6 Electronic features

Response time Input → communication	All calculations are averaged over an interval of between 8 to 256 periods. Preset interval is 64 periods, which is 1.28 second at 50 Hz.		
Battery Manufacturer Type Battery lifetime	Varta CR2032 Li-battery Approx. 6 years (at 23°C – typical)		
Memory Capacity	(U)MT550 8 MB	(U)MT560 8 MB	
Divisions	Recorder A Recorder B Alarms recorder	Recorder A Recorder B Alarms recorder Q reports, details	
Selection of limit values Sampling period	Minimal Maximal Average Minimal (thermal function) Maximal (thermal function) I to 60 min		
Status LED's COM PWR	Green Communication Red Instrument power		


⁽²⁾ Specifications are identical for COM2 and RD500

9.7 Safety features

Protection	Protection class I
▲ ⊕	(protective earth terminal due to touchable metal parts (USB-B, RJ-45, DB9), current limiting fuse 1A on aux. Supply (L terminal) Voltage inputs via high impedance Double insulation on I/O ports and COM1-2 ports
Pollution degree	2
Installation category	CAT III; 600 V meas. Inputs Acc. to EN 61010-1 CAT III; 300 V aux. supply Acc. to EN 61010-1
Test voltages	U _{AUX} ↔I/O, COM1,2: 2210 VAC _{rms} U _{AUX} ↔U, I inputs: 3320 VAC _{rms} U, I inputs↔I/O, COM1,2: 3320 VAC _{rms} HV Tariff input↔I/O, COM1,2: 2210 VAC _{rms} U inputs↔I inputs: 3320 VAC _{rms}
EMC	Directive on electromagnetic compatibility 2004/108/EC Acc. to EN 61000-6-2 and EN 61000-6-4
Ambient conditions Ambient temperature Operating temperature Storage temperature Average annual humidity	usage group III -1004555 °C Acc. to IEC/EN 60 688 -30 to +70 °C -40 to +70 °C ≤ 93% r.h.
Enclosure DIN ANSI RD500 Enclosure protection Flammability Mounting Dimensions Weight	ABS & PC (transparent sliding cover; PC) – self-extinguishability, in compliance with UL 94 V0 IP 40 (IP 20 for terminals) Acc. to UL 94 V-0 Rail mounting 35 × 15 mm acc. to DIN EN 50 022 160 × 123 ×75 mm 500 g

	Technical data
9.8 Remote display	
Electronic features LCD Type LCD Size LCD refreshing Response time Input → display	Graphic LCD 128 x 64 dots Every 200 ms All calculations are averaged over an interval of between 8 to 256 periods. Preset interval is 64 periods, which is 1.28 second at 50 Hz.
LED's Communication Alarm	Green Communication in progress Red Fulfilled condition for alarm
Communication Type Connection terminals	RS485 DB9 connector
Power supply Universal	AC Rated voltage 48276 V AC Rated frequency 4565 Hz DC Rated voltage 20300V Consumption < 5 VA
Safety features Safety	In compliance with SIST EN 61010–1 300 V rms, installation category III Pollution degree 2
EMC	Directive on electromagnetic compatibility 2004/108/ES In compliance with SIST EN 61000-6-2 and SIST EN 61000-6-4
Protection Ambient conditions	In compliance with SIST EN 60529 Front side: IP52 Rear side: IP20
Temperature range of operation Storage temperature range Max. storage and transport humidity	-5 to +55°C -25 to +70°C ≤ 90% r.h.
Enclosure	ABS & Polycarbonate Blend – self-extinguishability, in compliance with UL 94 V0
Weight	up to 450g

9.9 Dimensions

10. APPENDIX A: MODBUS PROTOCOL

10.1 Modbus communication protocol	74
Modbus	
Register table for the actual measurements.	74
Register table for the normalized actual measurements	76
100% values calculations for normalized measurements	78
Data types decoding	79

10.1 Modbus communication protocol

Modbus and DNP3 protocol are enabled via RS232 and RS485 or Ethernet communication. Both communication protocols are supported on all communication ports of the device. The response is the same type as the request.

Modbus

There are two Modbus protocol types: Modbus RTU for serial communication and Modbus TCP for Ethernet communication. Modbus protocol enables operation of device on Modbus networks. For device with serial communication the Modbus protocol enables point to point (for example Device to PC) communication via RS232 communication and multi drop communication via RS485 communication. Modbus protocol is a widely supported open interconnect originally designed by Modicon.

The memory reference for input and holding registers is 30000 and 40000 respectively.

Register table for the actual measurements

register table for the actual measure	MODBUS			
Parameter	Reg	ister	T	
	Start	End	Type	
Voltage U ₁	30107	30108	T5	
Voltage U ₂	30109	30110	T5	
Voltage U ₃	30111	30112	T5	
Average phase Voltage U~	30113	30114	T5	
Phase to phase voltage U ₁₂	30118	30119	T5	
Phase to phase voltage U ₂₃	30120	30121	T5	
Phase to phase voltage U ₃₁	30122	30123	T5	
Average phase to phase Voltage Upp~	30124	30125	T5	
Current I ₁	30126	30127	T5	
Current I ₂	30128	30129	T5	
Current I ₃	30130	30131	T5	
Total Current I	30138	30139	T5	
Neutral current In	30132	30133	T5	
Real Power P ₁	30142	30143	T6	
Real Power P ₂	30144	30145	T6	
Real Power P ₃	30146	30147	T6	
Total Real Power P	30140	30141	T6	
Reactive Power Q ₁	30150	30151	T6	
Reactive Power Q ₂	30152	30153	T6	
Reactive Power Q ₃	30154	30155	T6	
Total Reactive Power Q	30148	30149	T6	
Apparent Power S ₁	30158	30159	T5	
Apparent Power S ₂	30160	30161	T5	
Apparent Power S ₃	30162	30163	T5	
Total Apparent Power S	30156	30157	T5	
Power Factor PF ₁	30166	30167	T7	
Power Factor PF ₂	30168	30169	T7	
Power Factor PF ₃	30170	30171	T7	
Total Power Factor PF	30164	30165	T7	

		MODDII	9
D		MODBUS)
Parameter	Reg		Type
D A 1. II I	Start	End	
Power Angle U ₁ –I ₁	30173		T2
Power Angle U ₂ –I ₂	30174		T2
Power Angle U ₃ –I ₃	30175		T2
Power Angle atan2(Pt, Qt)	30172		T2
Angle U ₁ –U ₂	30115		T2
Angle U ₂ –U ₃	30116		T2
Angle U_3 – U_1	30117		T2
Frequency f	30105	30106	T5
/oltage unbalance Uu	30176		T1
THD I ₁	30188		T1
THD I ₂	30189		T1
THD I ₃	30190		T1
$\stackrel{\circ}{\mathrm{HD}}\stackrel{\circ}{\mathrm{U}_1}$	30182		T1
THD U ₂	30183		T1
THD U ₃	30184		T1
ΓHD U ₁₂	30185		T1
ГНD U ₂₃	30186		T1
THD U ₃₁	30187		T1
Max Demand Since Last RESET	30107		11
MD Real Power P (positive)	30542	30543	Т6
MD Real Power P (negative)	30548	30549	T6
MD Reactive Power Q – L	30554	30555	T6
MD Reactive Power Q – C			
`	30560	30561	T6
MD Apparent Power S	30536	30537	T5
MD Current I ₁	30518	30519	T5
MD Current I ₂	30524	30525	T5
MD Current I ₃	30530	30531	T5
Dynamic Demand Values			
MD Real Power P (positive)	30510	30511	T6
MD Real Power P (negative)	30512	30513	T6
MD Reactive Power Q – L	30514	30515	Т6
MD Reactive Power Q –	30516	30517	T6
MD Apparent Power S	30508	30509	T5
MD Current I ₁	30502	30503	T5
MD Current I ₂	30504	30505	T5
MD Current I ₃	30506	30507	T5
Energy			
Energy Counter 1 Exponent	30401		T2
Energy Counter 2 Exponent	30402		T2
Energy Counter 3 Exponent	30403		T2
Energy Counter 4 Exponent	30404		T2
Counter E1		30407	
	30406	30407	T3
Counter E2	30408	30409	T3
Counter E3	30410	30411	T3
Counter E4	30412	30413	T3

	MODBUS			
Parameter	Reg	ister		
	Start	End	Type	
Counter E1, Cost	30446	30447	Т3	
Counter E2, Cost	30448	30449	Т3	
Counter E3, Cost	30450	30451	Т3	
Counter E4, Cost	30452	30453	Т3	
Active tariff	30405		T1	
Internal Temperature	30181		T2	

Actual counter value is calculated: Counter * 10 Exponent

Register table for the normalized actual measurements

Register table for the normalized act	MOD	100%	
Parameter	Register	Type	value
Voltage U ₁	30801	T16	Un
Voltage U ₂	30802	T16	Un
Voltage U ₃	30803	T16	Un
Average phase Voltage U~	30804	T16	Un
Phase to phase voltage U ₁₂	30805	T16	Un
Phase to phase voltage U ₂₃	30806	T16	Un
Phase to phase voltage U ₃₁	30807	T16	Un
Average phase to phase Voltage $U_{pp\sim}$	30808	T16	Un
Current I ₁	30809	T16	In
Current I ₂	30810	T16	In
Current I ₃	30811	T16	In
Total Current I	30812	T16	It
Neutral current In	30813	T16	In
Average Current I~	30815	T16	In
Real Power P ₁	30816	T17	Pn
Real Power P ₂	30817	T17	Pn
Real Power P ₃	30818	T17	Pn
Total Real Power P	30819	T17	Pt
Reactive Power Q ₁	30820	T17	Pn
Reactive Power Q ₂	30821	T17	Pn
Reactive Power Q ₃	30822	T17	Pn
Total Reactive Power Q	30823	T17	Pt
Apparent Power S ₁	30824	T16	Pn
Apparent Power S ₂	30825	T16	Pn
Apparent Power S ₃	30826	T16	Pn
Total Apparent Power S	30827	T16	Pt
Power Factor PF ₁	30828	T17	1
Power Factor PF ₂	30829	T17	1
Power Factor PF ₃	30830	T17	1
Total Power Factor PF	30831	T17	1
CAP/IND P.F. Phase 1 (PF ₁)	30832	T17	1
CAP/IND P.F. Phase 2 (PF ₂)	30833	T17	1
CAP/IND P.F. Phase 3 (PF ₃)	30834	T17	1
CAP/IND P.F. Total (PFt)	30835	T17	1
Power Angle U ₁ –I ₁	30836	T17	100°
Power Angle U ₂ –I ₂	30837	T17	100°

	MOD	RIIC	100%
Parameter	Register	Type	value
Power Angle U ₃ –I ₃	30838	T17	100°
Power Angle atan2(Pt, Qt)	30839	T17	100°
Angle U_1 – U_2	30840	T17	100°
Angle U ₂ -U ₃	30841	T17	100°
Angle U ₃ -U ₁	30842	T17	100°
Frequency	30842	T17	Fn+10Hz
Voltage unbalance Uu	30843	T16	100%
THD I ₁	30845	T16	100%
THD I ₂	30845	T16	100%
THD I ₃	30847	T16	100%
THD U ₁	30848	T16	100%
THD U ₂	30849	T16	100%
THD U ₃	30849	T16	100%
THD U ₁₂	30850	T16	100%
THD U ₁₂ THD U ₂₃	30852	T16	100%
		T16	100%
THD U ₃₁	30853	110	10076
Max Demand Since Last Reset MD Real Power P (positive)	30854	T16	Pt
MD Real Power P (negative)	30855	T16	Pt
MD Reactive Power Q – L	30856	T16	Pt Pt
MD Reactive Power Q – C	30857	T16	Pt
MD Apparent Power S		T16	Pt
MD Current I ₁	30858	T16	In
MD Current I ₂	30859 30860	T16	In
MD Current I ₃			
	30861	T16	In
Dynamic Demand Values MD Real Power P (positive)	20062	T16	Pt
	30862		
MD Real Power P (negative) MD Reactive Power Q – L	30863	T16	Pt Pt
	30864	T16	Pt Pt
MD Reactive Power Q – C	30865	T16	Pt Pt
MD Apparent Power S	30866	T16	-
MD Current I ₁	30867	T16	In
MD Current I ₂	30868	T16	In
MD Current I ₃	30869	T16	In
Energy	20070	T17	
Energy Counter 1	30870	T17	
Energy Counter 2	30871	T17	Actual
Energy Counter 3	30872	T17	counter
Energy Counter 4	30873	T17	value
Energy Counter 1 Cost	30874	T17	MOD
Energy Counter 2 Cost	30875	T17	20000 is
Energy Counter 3 Cost	30876	T17	returned
Energy Counter 4 Cost	30877	T17	Totalliou
Total Energy Counter Cost	30878	T17	
Active Tariff	30879	T1	1000
Internal Temperature	30880	T17	100°

100% values	calculations	for normalized	measurements

Un=	(R40147 / R40146) * R30015 * R40149		
In=	(R40145 / R401	44) * R30017 * R40148	
Pn =	Un*In	Un*In	
It =	In	Connection Mode: 1b	
It =	3*In	Connection Modes: 3b, 4b, 3u, 4u	
Pt =	Pn	Connection Mode: 1b	
Pt =	3*Pn	Connection Modes: 3b, 4b, 3u, 4u	
Fn=	R40150		

All other MODBUS regiters are a subject to change. For the latest MODBUS register defenitions go to ISKRA MIS's web page www.iskra-mis.si

Data types decoding

Data types decoding				
Type	Bit mask	Description		
T1		Unsigned Value (16 bit)		
11		Example: 12345 = 3039(16)		
Т2		Signed Value (16 bit)		
12		Example: $-12345 = CFC7(16)$		
Т3		Signed Long Value (32 bit)		
13		Example: 123456789 = 075B CD 15(16)		
		Short Unsigned float (16 bit)		
T4	bits # 1514	Decade Exponent(Unsigned 2 bit)		
1.	bits # 1300	Binary Unsigned Value (14 bit)		
		Example: 10000*102 = A710(16)		
		Unsigned Measurement (32 bit)		
T5	bits # 3124	Decade Exponent(Signed 8 bit)		
15	bits # 2300	Binary Unsigned Value (24 bit)		
		Example: 123456*10-3 = FD01 E240(16)		
		Signed Measurement (32 bit)		
Т6	bits # 3124	Decade Exponent (Signed 8 bit)		
10	bits # 2300	Binary Signed value (24 bit)		
		Example: - 123456*10-3 = FDFE 1DC0(16)		
		Power Factor (32 bit)		
	bits # 3124	Sign: Import/Export (00/FF)		
T7	bits # 2316	Sign: Inductive/Capacitive (00/FF)		
	bits # 1500	Unsigned Value (16 bit), 4 decimal places		
		Example: 0.9876 CAP = 00FF 2694(16)		
	1:: "	Time (32 bit)		
	bits # 3124	1/100s 00 - 99 (BCD)		
Т9	bits # 2316	Seconds 00 - 59 (BCD)		
	bits # 1508	Minutes 00 - 59 (BCD)		
	bits # 0700	Hours 00 - 24 (BCD)		
		Example: 15:42:03.75 = 7503 4215(16)		
	1.14 // 2.1 2.4	Date (32 bit)		
T10	bits # 3124	Day of month 01 - 31 (BCD)		
T10	bits # 2316 bits # 1500	Month of year 01 - 12 (BCD)		
	DILS # 1500	Year (unsigned integer) 19984095		
		Example: 10, SEP 2000 = 1009 07D0(16)		
T16		Unsigned Value (16 bit), 2 decimal places		
		Example: 123.45 = 3039(16) Signed Value (16 bit), 2 decimal places		
T17		Example: -123.45 = CFC7(16)		
T Str4		Text: 4 characters (2 characters for 16 bit register)		
T Str6		Text: 4 characters (2 characters for 16 bit register) Text: 6 characters (2 characters for 16 bit register)		
T Str8				
T Str16		Text: 8 characters (2 characters for 16 bit register)		
		Text: 16 characters (2 characters for 16 bit register)		
T_Str40		Text: 40 characters (2 characters for 16 bit register)		

11. APPENDIX B: DNP3 PROTOCOL

11.1 DNP3 communication protocol	81
DNP3	
Register table for the actual measurements	81
Data types decoding	
100% values calculations	

11.1 DNP3 communication protocol

Communication protocols:

Modbus and DNP3 protocol are enabled via RS232 and RS485 or Ethernet communication. Both communication protocols are supported on all communication ports of the device. The response is the same type as the request.

DNP3

DNP3 protocol enables operation of MC on DNP3 networks. For device with serial communication the DNP3 protocol enables point to point (for example device to PC) communication via RS232 communication and multi drop communication via RS485.

Object		Request		Response		
Object Number	Variation Number	Description	Function Codes (dec)	Qualifier Codes (hex)	Function Codes (dec)	Qualifier Codes (hex)
30	2	16-Bit Analogue Input with flag	1	00, 01, 02, 06	129	00, 01, 02, 00
30	4	16-Bit Analogue Input without flag	1	00, 01, 02, 06	129	00, 01, 02, 00

Register table for the actual measurements

DNP3 Point	Parameter Parameter	Type	100% value
0	Voltage U1	T16	Un
1	Voltage U2	T16	Un
2	Voltage U3	T16	Un
3	Average phase Voltage U~	T16	Un
4	Phase to phase voltage U12	T16	Un
5	Phase to phase voltage U23	T16	Un
6	Phase to phase voltage U31	T16	Un
7	Average phase to phase Voltage Upp~	T16	Un
8	Current I1	T16	In
9	Current I2	T16	In
10	Current I3	T16	In
11	Total Current I	T16	In
12	Neutral current In	T16	In
13	Reserved	T16	In
14	Average Current I~	T16	In
15	Real Power P1	T17	Pn
16	Real Power P2	T17	Pn

DNP3 Point	Parameter	Type	100% value
17	Real Power P3	T17	Pn
18	Total Real Power P	T17	Pt
19	Reactive Power Q1	T17	Pn
20	Reactive Power Q2	T17	Pn
21	Reactive Power Q3	T17	Pn
22	Total Reactive Power Q	T17	Pt
23	Apparent Power S1	T16	Pn
24	Apparent Power S2	T16	Pn
25	Apparent Power S3	T16	Pn
26	Total Apparent Power S	T16	Pt
27	Power Factor PF1	T17	1
28	Power Factor PF2	T17	1
29	Power Factor PF3	T17	1
30	Total Power Factor PF	T17	1
31	CAP/IND P. F. Phase 1 (PF1)	T17	1
32	CAP/IND P. F. Phase 2 (PF2)	T17	1
33	CAP/IND P. F. Phase 3 (PF3)	T17	1
34	CAP/IND P. F. Total (PFt)	T17	1
35	Power Angle U1–I1	T17	100°
36	Power Angle U2–I2	T17	100°
37	Power Angle U3–I3	T17	100°
38	Power Angle atan2(Pt, Qt)	T17	100°
39	Angle U1–U2	T17	100°
40	Angle U2–U3	T17	100°
41	Angle U3–U1	T17	100°
42	Frequency	T17	Fn+10Hz
43	Voltage unbalance Uu	T16	100%
44	THD I1	T16	100%
45	THD 12	T16	100%
46	THD 13	T16	100%
47	THD U1	T16	100%
48	THD U2	T16	100%

DNP3 Point	Parameter	Type	100% value
49	THD U3	T16	100%
50	THD U12	T16	100%
51	THD U23	T16	100%
52	THD U31	T16	100%
-	Max Demand Since Last Reset		
53	MD Real Power P (positive)	T16	Pt
54	MD Real Power P (negative)	T16	Pt
55	MD Reactive Power Q – L	T16	Pt
56	MD Reactive Power Q – C	T16	Pt
57	MD Apparent Power S	T16	Pt
58	MD Current I1	T16	In
59	MD Current I2	T16	In
60	MD Current I3	T16	In
	Dynamic Demand Values		
61	MD Real Power P (positive)	T16	Pt
62	MD Real Power P (negative)	T16	Pt
63	MD Reactive Power Q – L	T16	Pt
64	MD Reactive Power Q – C	T16	Pt
65	MD Apparent Power S	T16	Pt
66	MD Current I1	T16	In
67	MD Current I2	T16	In
68	MD Current I3	T16	In
69	Energy Counter 1	T17	
70	Energy Counter 2	T17	
71	Energy Counter 3	T17	
72	Energy Counter 4	T17	Actual counter
73	Energy Counter 1 Cost	T17	value MOD 20000 is
74	Energy Counter 2 Cost	T17	returned
75	Energy Counter 3 Cost	T17	
76	Energy Counter 4 Cost	T17	
77	Total Energy Counter Cost	T17	
78	Active Tariff	T1	

Data types decoding

See Data types decoding in Appendix A: Modbus protocol on page 79.

100% values calculations

See 100% values calculations for normalized measurements in Appendix A: Modbus protocol on page 78.

12. APPENDIX C: CALCULATIONS & EQUATIONS

12.1 Calculations	
Definitions of symbols	86
12.2 Equations	87
Voltage	87
Current	87
Power	88
THD	89
Flickers	89
Energy	89

12.1 Calculations

Definitions of symbols

No	Symbol	Definition
1	$M_{\rm v}$	Sample factor
2	M_{P}	Average interval
3	U_{f}	Phase voltage (U ₁ , U ₂ or U ₃)
4	$ m U_{ff}$	Phase-to-phase voltage (U ₁₂ , U ₂₃ or U ₃₁)
5	N	Total number of samples in a period
6	n	Sample number $(0 \le n \le N)$
7	x, y	Phase number (1, 2 or 3)
8	i_n	Current sample n
9	$u_{\rm fn}$	Phase voltage sample n
10	u_{fFn}	Phase-to-phase voltage sample n
11	ϕ_{f}	Power angle between current and phase voltage $f\left(\phi_{1},\phi_{2}\text{ or }\phi_{3}\right)$
12	$U_{\rm u}$	Voltage unbalance
13	U _c	Agreed supply voltage

12.2 Equations

Voltage

$$U_{\rm f} = \sqrt{\frac{\displaystyle\sum_{\rm n=1}^{N} u_{\rm n}^2}{N}}$$

Phase voltage

N-128 samples in one period (up to 65 Hz) N-128 samples in M_v periods (above 65Hz) Example: $400 \text{ Hz} \rightarrow N=7$

$$U_{xy} = \sqrt{\frac{\sum_{n=1}^{N} (u_{xn} - u_{yn})^{2}}{N}}$$

Phase-to-phase voltage

u_x, u_y – phase voltages (U_f) N – a number of samples in a period

$$\begin{split} U_{u} &= \sqrt{\frac{1 - \sqrt{3 - 6\beta}}{1 + \sqrt{3 - 6\beta}}} \cdot 100\% \\ \beta &= \frac{U_{12 \text{fund}}^4 + U_{23 \text{fund}}^4 + U_{31 \text{fund}}^4}{\left(U_{12 \text{fund}}^2 + U_{23 \text{fund}}^2 + U_{31 \text{fund}}^2\right)^2} \end{split}$$

Voltage unbalance

 U_{fund} – first harmonic of phase-to-phase voltage

Current

$$_{I_{RMS}}=\sqrt{\frac{\sum\limits_{n=l}^{N}i_{n}^{2}}{N}}$$

Phase current

N – 128 samples in a period (up to 65 Hz) N – 128 samples in more periods (above 65 Hz)

$$I_{n} = \sqrt{\frac{\sum_{n=1}^{N} (i_{1n} + i_{2n} + i_{3n})^{2}}{N}}$$

Neutral current

i – n sample of phase current (1, 2 or 3) N = 128 samples in a period (up to 65 Hz)

Power

$P_{f} = \frac{1}{N} \cdot \sum_{n=1}^{N} (u_{f} N_{n} \times i_{f} N_{n})$	Active power by phases N – a number of periods n – a number of samples in a period f – phase designation
$P_t = P_1 + P_2 + P_3$	Total active power t – total power 1, 2, 3 – phase designation
$SignQ_{f}(\varphi)$ $\varphi \in [0^{\circ} - 180^{\circ}] \Rightarrow SignQ_{f}(\varphi) = +1$ $\varphi \in [180^{\circ} - 360^{\circ}] \Rightarrow SignQ_{f}(\varphi) = -1$	
$S_f = U_f \times I_f$	Apparent power by phases U_f – phase voltage I_f – phase current
$S_t = S_1 + S_2 + S_3$	Total apparent power S_f – apparent power by phases
$Q_{f} = SignQ_{f}(\varphi) \times \sqrt{S_{f}^{2} - P_{f}^{2}}$	Reactive power by phases S_f – apparent power by phases P_f – active power by phases
$Q_t = Q_1 + Q_2 + Q_3$	Total reactive power Q_f – reactive power by phases
$ \phi_{s} = a \tan 2(P_{t}, Q_{t}) $ $ \phi_{s} = [-180^{\circ}, 179,99^{\circ}] $	$\begin{aligned} & \textbf{Total power angle} \\ & P_t - \text{total active power} \\ & S_t - \text{total apparent power} \end{aligned}$
$PF = \frac{P}{S}$	Distortion factor P – total active power S – total apparent power
$PF_f = \frac{P_f}{S_f}$	$\begin{aligned} & \textbf{Distortion factor} \\ & P_f - \text{phase active power} \\ & S_f - \text{phase apparent power} \end{aligned}$

THD

$$I_f THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} In^2}}{I_1} \cdot 100$$

Current THD

I₁ – value of first harmonic n – number of harmonic

$$U_f THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} Un^2}}{U_1} \cdot 100$$

Phase voltage THD

 U_1 – value of first harmonic n – number of harmonic

$$U_{ff}THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} Un^2}}{U_1} \cdot 100$$

Phase-to-phase voltage THD

U₁ – value of first harmonic n – number of harmonic

Flickers

$$\begin{split} P_{50S} &= \left(P_{30} + P_{50} + P_{80}\right) / 3 \\ P_{10S} &= \left(P_6 + P_8 + P_{10} + P_{13} + P_{17}\right) / 5 \\ P_{3S} &= \left(P_{2,2} + P_3 + P_4\right) / 3 \\ P_{1S} &= \left(P_{1,7} + P_1 + P_{1,5}\right) / 3 \\ P_{st} &= \sqrt{\frac{0,0314P_{0,1} + 00525P_{1S} + 0,0657P_{3S}}{+ 0,28P_{10S} + 0,08P_{50S}}} \end{split}$$

P_{st} - Short-term flicker intensity

Short-term flicker intensity Short-term flicker intensity is measured in 10 minute periods. P_x – flicker levels that are exceeded by x% in a 10-minute period (e.g. $P_{0,1}$ represents a flicker level that is exceeded by 0.1% samples)

$$P_{lt} = \sqrt[3]{\sum_{i=1}^{12} \frac{P_{sti}^3}{12}}$$

P_{lt} – Long-term flicker intensity

Calculated from twelve successive values of short-term flicker intensity in a two-hour period

Energy

Price in tariff = $Price \cdot 10^{Tarif price exponent}$

Total exponent of tariff price and energy price in all tariffs

13. APPENDIX D: DATA FORMATS

13.1 XML data format	9
Explanation of XML data format	
•	
Example of alarms <data> package</data>	
Example of readings <data> package</data>	
Example of acknowledgement package:	9′

13.1 XML data format

Currently, two XML formats are available. XML-smart is general purpose XML format whereas XML-logic is more proprietary, suitable for special customers. For this purpose only XML-smart format will be explained.

Explanation of XML data format

All data, which is prepared to be sent at next time interval is combined into element <*data*>. It comprises of elements <*value*>, which contain all information regarding every single reading.

Attributes of element <*value*> are:

- logId: Identification code of data package. It is used as a confirmation key and should therefore be unique for each device.
- *app*: application type ??
- *storeType:* data type ("measurement" or "alarm") or quality report??
- *dataProvider*: "xml001" ??
- controlUnit: Serial number of the device that sent this data
- part: rekorder ??
- *datetimeUTC*: UTC date and time of the beginning of current time interval in which data was sent (yyyy-mm-dd hh:mm:ss).
- *ident*: ID code of particular reading
- tFunc: thermal function (1= ON / 0 = OFF)
- cond: condition (1 = lower than; 0 = higher then)
- condVal: limit value
- almNum: alarm serial number.
- unit: Measuring Parameter Unit (V, A, VA, W, VAr...)
- *tInterval:* sampling interval in minutes
- *dst:* (daylight savings time) in minutes
- *tzone:* timezone in minutes

Example of alarms <data> package

Example of readings <data> package

```
<data logId="033324218" app="ML" storeType="measurement"</pre>
dataProvider="xml001" controlUnit="MC004475" part="B"
datetimeUTC="2009-09-16
                           3:00:00" dst="60" tzone=" 60"
tInterval="015">
       <value ident="U1</pre>
                                         ">234,47</value>
                           " unit="V
       <value ident="U2</pre>
                           " unit="V
                                        ">234,87</value>
       <value ident="U3</pre>
                           " unit="V
                                        ">234,52</value>
       <value ident="I1</pre>
                           " unit="A
                                        ">1,14</value>
       <value ident="I2</pre>
                           " unit="A
                                        ">1,50</value>
       <value ident="I3</pre>
                           " unit="A
                                         ">3,58</value>
       <value ident="P1</pre>
                           " unit="W ">-0,063e+03</value>
       <value ident="P2</pre>
                           " unit="W ">-0,101e+03</value>
       <value ident="P3</pre>
                           " unit="W ">0,281e+03</value>
       <value ident="P
                           " unit="W ">0,11e+03</value>
       <value ident="0</pre>
                           " unit="var ">-1,37e+03</value>
       <value ident="E1</pre>
                           " unit="Wh">19620e+01</value>
       <value ident="E2</pre>
                           " unit="varh">6e+01</value>
       <value ident="E3</pre>
                           " unit="Wh">1303391e+01</value>
       <value ident="E4</pre>
                           " unit="varh">2999595e+01</value>
       <value ident="ePF " unit="</pre>
                                        ">0,0820</value>
       </data>
```

Example of acknowledgement package:

```
<ack logId="033220002" datetimeUTC ="2008-01-31
23:00:50:000"></ack>
```

Iskra MIS, d. d.

Ljubljanska cesta 24a SI-4000 Kranj, Slovenia Phone: 04 237 21 12

Fax: 04 237 21 29 E-mail: <u>info@iskra-mis.si</u> www.iskra-mis.si